My watch list


Cluster of Resistant Tuberculosis Pathogen Discovered


Researchers from the UZH discovered a multidrug-resistant Mycobacterium tuberculosis in eight refugees.

10-Jan-2018: Between February and November 2016, the Institute of Medical Microbiology at the University of Zurich discovered a multidrug-resistant Mycobacterium tuberculosis in eight refugees arriving in Europe from the Horn of Africa. The analyses provided an impulse for launching a transnational investigation and developing a pan-European alerting system.

Resistant tuberculosis pathogens are a regular part of the day-to-day business at the Swiss National Center for Mycobacteria (NZM) at the University of Zurich. And yet, the Mycobacterium tuberculosis found in a Somali asylum seeker in the refugee center in Chiasso in February 2016 was extraordinary: “These bacteria exhibited a new combination of resistance mutations against four different antibiotics that had never before been described,” says Peter Keller, Head of Diagnostics at NZM, who identified the germ. The multidrug resistance makes it necessary for people carrying these bacteria to be isolated and undergo intravenous drug treatment at a hospital for several months. 

In the months following the discovery, the same resistant germ was also observed in further patients, all of whom had migrated to Europe from countries on the Horn of Africa. In total, the NZM identified the pathogen in eight refugees from Somalia, Eritrea, and Djibouti between February and November 2016. Thanks to the rapid detection and the isolation measures, no further people were infected in Switzerland.

Alert issued and preventive measures

This unusual build-up prompted the management of NZM and of the Federal Office of Public Health (FOPH) to alert their colleagues across Europe. At the same time, the German reference laboratory in Borstel near Hamburg also registered a case with the same pathogen. The NZM then made their molecular-biological data available to the European Center for Disease Prevention and Control (ECDC) to enable their team to identify further possible cases in the EU. In the course of these analyses, the European tuberculosis reference laboratories identified a total of 21 cases in a cross-border collaboration. As with the cases in Switzerland, these patients had also come from the Horn of Africa or Sudan.

Thanks to the alert, the pathogen was prevented from spreading further, and the authorities also took preventive measures: “The extraordinary case led to the development of a European alerting organization for dangerous tuberculosis pathogens,” says Peter Keller, who initiated the European analyses. He is the corresponding author of the wide-reaching study, in which multiple European centers are involved and which was published in the prestigious journal Lancet Infectious Diseases.

Chain of infection reconstructed

Molecular-genetic analyses and interviews with patients made it possible for the researchers to partially reconstruct the chain of infection. The data indicates that the tuberculosis pathogen spread among migrants in a refugee camp near Bani Walid in Libya. The overcrowded camp, some 180 kilometers southeast of Tripoli, is notorious for its poor hygiene and inhumane conditions. Several of the patients diagnosed with this particular resistant Mycobacterium tuberculosis had come through this camp on their way to Europe.

Rapid test developed

It is no longer possible to identify with any degree of certainty the first carrier or who introduced the bacteria to the camp. Scientists believe that the pathogen originated in northern Somalia, where it is likely to have developed the dangerous new combination of resistances as a result of mutations. Genetic analyses have allowed researchers to develop a rapid PCR test. The test can be used in suspected cases of this Mycobacterium tuberculosis and the results are obtained in a matter of hour

Original publication:
Timothy M Walker et al.; "A cluster of multidrug-resistant Mycobacterium tuberculosis among patients arriving in Europe from the Horn of Africa: a molecular epidemiological study"; Lancet Infectious Disease; 8. Januar 2018.

Facts, background information, dossiers

  • Mycobacterium tuberculosis
  • tuberculosis
  • multidrug resistance
  • rapid tests

More about Universität Zürich

  • News

    Eco-Friendly Nanoparticles for Artificial Photosynthesis

    Researchers at the University of Zurich have developed a nanoparticle type for novel use in artificial photosynthesis by adding zinc sulfide on the surface of indium-based quantum dots. These quantum dots produce clean hydrogen fuel from water and sunlight – a sustainable source of energy. ... more

    Special Antibodies Could Lead to HIV Vaccine

    Around one percent of people infected with HIV produce antibodies that block most strains of the virus. These broadly acting antibodies provide the key to developing an effective vaccine against HIV. Researchers from the University of Zurich and the University Hospital Zurich have now shown ... more

    Protein modifications pointing to cancer

    Researchers from the University of Zurich can, for the first time, precisely characterize the protein modification ADP-ribosylation for all proteins in a tissue sample. The changes, which are a typical reaction to stress, provide information about the condition of a cell. Together with the ... more

  • q&more articles

    From the reveller to the lark

    Because of their genes, some people come into the world either as a lark (early riser) or a night-owl (late sleeper). In addition, however, even in normal people, such ”chronotype“ changes with age. Starting at puberty they develop into revellers. At the age of 20 a change occurs and the ... more

  • Authors

    Dr. Steven A. Brown

    Steven B. Brown studied biochemistry at Harvard College, Cambridge, Massachusetts, USA. In 1997 he received his doctorate in the Department of Biological Chemistry and Molecular Pharmacology, Harvard University, Cambridge, Massachusetts, USA. From 1998 – 2005 he was a postdoctoral fellow at ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE