q&more
My watch list
my.chemie.de  
Login  

News

Quantum cocktail provides insights on memory control

Michael Messer, ETH Zürich

A cocktail of 'shaken quantum magnets'. Experiments in which atoms were immersed in a shaken crystal made of light, provide novel insight that might be helpful to understand the fundamental behaviour of magnetic storage devices.

29-Jan-2018: The speed of writing and reading out magnetic information from storage devices is limited by the time that it takes to manipulate the data carrier. To speed up these processes, researchers have recently started to explore the use of ultrashort laser pulses that can switch magnetic domains in solid-state materials. This route proved to be promising, but the underlying physical mechanisms remain poorly understood. This is largely due the complexity of the magnetic materials involved, in which a large number of magnetic entities interact with one another. Such so-called quantum many-body systems are notoriously difficult to study.

Frederik Görg and his colleagues in the group of Prof. Tilman Esslinger in the Department of Physics at ETH Zurich (Switzerland) have now used an alternative approach to obtain fresh insight into the physics at play in these systems, as they report in a publication.

Görg and his co-workers simulated magnetic materials using electrically neutral (but magnetic) atoms that they trapped in an artificial crystal made of light. Even if this system is very different from the storage materials they emulate, both are governed by similar basic physical principles. In contrast to a solid-state environment, however, many unwanted effects resulting for example from impurities in the material are absent and all key parameters of the system can be finely tuned. Exploiting this reduction of complexity and degree of control, the team was able to monitor the microscopic processes in their quantum many-body system and to identify ways to enhance and manipulate the magnetic order in their system.

Most importantly, the ETH physicists demonstrated that by controlled shaking of the crystal in which the atoms reside, they could switch between two forms of magnetic order, known as anti-ferromagnetic and ferromagnetic ordering -- an important process for data storage. The fundamental understanding gained from these experiments should therefore help to identify and understand materials that might serve as the basis for the next generation of data-storage media.

Original publication:
Frederik Görg, Michael Messer, Kilian Sandholzer, Gregor Jotzu, Rémi Desbuquois & Tilman Esslinger; "Enhancement and sign change of magnetic correlations in a driven quantum many-body system"; Nature; 2018

Facts, background information, dossiers

  • quantum
  • data storage
  • quantum magnets
  • nanophotonics
  • impurities

More about ETH Zürich

  • News

    A protein that self-replicates

    Long regarded as a biological aberration, amyloids are fibrous aggregates of short protein fragments. Amyloids have a bad reputation because they are thought to be the cause of multiple neurodegenerative diseases, including Alzheimer's, Parkinson's and Creutzfeldt-Jakob disease. It was only ... more

    Sticking sugar to protein

    Whenever cells receive signals, interact with other cells or identify viruses and bacteria, the process involves not only proteins but also sugar chains attached to their surface. The subject of relatively little attention until now, these structures differ widely in composition and branchi ... more

    Brain signals for drug screening

    An international team led by ETH researchers has developed a technique that uses electrical brain signals to more precisely evaluate the effect of drugs on the brain. It could be of particular use in the early development phase of anti-epilepsy medication. There are still comparatively few ... more

  • q&more articles

    Investment for the Future

    This is a very particular concern and at the same time the demand placed annually on Dr. Irmgard Werner, who, as a lecturer at the ETH Zurich, supports around 65 pharmacy students in the 5th semester practical training in “pharmaceutical analysis”. With joy and enthusiasm for her subject sh ... more

    Analysis in picoliter volumes

    Reducing time, costs and human resources: many basic as well as applied analytical and diagnostic challenges can be performed on lab-on-a-chip systems. They enable sample quantities to be reduced, work steps to be automated and completed in parallel, and are ideal for combination with highl ... more

  • Authors

    Prof. Dr. Petra S. Dittrich

    Petra Dittrich is an Associate Professor in the Department of Biosystems Science and Engineering at ETH Zurich (Switzerland). She studied chemistry at Bielefeld University and the University of Salamanca (Spain). After completing her doctoral studies at the Max Planck Institute for Biophysi ... more

    Dr. Felix Kurth

    Felix Kurth studied bioengineering at the Technical University Dortmund (Germany) and at the Royal Institute of Technology in Stockholm (Sweden). During his PhD studies at ETH Zurich (Switzerland), which he completed in 2015, he developed lab-on-a-chip systems and methods for quantifying me ... more

    Lucas Armbrecht

    Lucas Armbrecht studied microsystems technology at the University of Freiburg (Breisgau, Germany). During his master’s, he focused on sensors & actuators and lab-on-a-chip systems. Since June 2015, he is PhD student in the Bioanalytics Group at ETH Zurich (Switzerland). In his doctoral stud ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:



Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE