q&more
My watch list
my.chemie.de  
Login  

News

Strange things happen when a crystal gets split in two

Copyright: TU Wien

The labyrinth structure on the surface of the crystal

05-Feb-2018: When a crystal is broken along certain directions the atoms reorganize in amazing ways. Researchers in Vienna have watched this happen, and have learned to control it.

The remarkable strength of ionic crystals is easily explained at the atomic scale: Positively and negatively charged atoms sit side by side in a periodic arrangement that repeats countless times.  The strong electrostatic force in between keeps them together.

But what happens when the periodic pattern comes to an abrupt end? Researchers at the Vienna University of Technology have carefully broken potassium tantalate crystals in specific directions, and imaged the resulting surfaces using a state of the art atomic force microscope. Their data was combined with computations performed at the University of Vienna, and a series of remarkable phenomena were ultimately explained. The results were published in the journal "Science", and are potentially useful for technologies such as hydrogen production.

It matters how you break it

Imagine the black and white squares on a chess board: they alternate along the rows and columns, and if one looks at an angle from corner to corner, they appear as black and white rows.

The black and white squares in two dimensions resemble a crystal in three dimensions: "If one splits a cubic crystal along a certain direction, one can end up with only positive or only negative charges at the surface. Such a situation would be highly unstable," explains Prof. Ulrike Diebold, head of surface physics group at the Institute of Applied Physics of the Vienna University of Technology. A stacking of purely positive and negatively charged layers would result in a potential of millions of volts across the tiny sample – scientists call this the "polar catastrophe". To avoid this situation, the atoms must reorganize somehow. The question is, how.

“There are different ways in which a surface can react when we split a crystal," says Martin Setvin, first author of the publication. "Electrons can accumulate at certain locations, the crystal lattice can become distorted, or molecules from the atmosphere can stick to the surface, changing its properties."

From islands to labyrinth

When looking with a scanning tunneling microscope, it is immediately obvious that a crystal broken at very low temperature has half of the negatively charged layer on one side, and half on the other. Because the negative islands cover exactly fifty percent of each surface, the surface is electrically neutral. “Yet, the island are large, so the polar catastrophe is not completely avoided: the field underneath them changes the physical properties of the material,” says Setvin.

Strangely though, if one raises the temperature of the surface just a little bit, the islands break apart and the atoms form a labyrinth of jagged lines.  The "walls" of this labyrinth are just one atom high and four to five atoms wide, and calculations show that this indeed a more stable configuration.

"The labyrinth structures are not only beautiful but also potentially useful," says Diebold. "That's exactly what you want: Tiny structures where strong electric fields occur at the atomic scale." One could use them, for example, to enable chemical reactions that would not proceed by themselves - such as the splitting of water, to produce hydrogen.

“Using these strange crystal surfaces in technology requires that we understand what goes on at the atomic scale," emphasizes Setvin. "That's why microscopy is so important to us. In high-resolution images we can directly observe individual atoms, watch how they move, and finally understand what nature tries to do. Maybe then, we can figure out how to use it."

Original publication:
Setvin et al.; "Polarity compensation mechanisms on the perovskite surface KTaO3(001)"; Science; 2018.

Facts, background information, dossiers

  • potassium tantalate

More about TU Wien

  • News

    Tracking microbial faecal pollution in water

    In a project supported by the Austrian Science Fund FWF, the microbiologist Andreas Farnleitner is looking at new methods for analysing faecal pollution in water. Using DNA analytics, the scientist aims to develop comprehensive and simple methods to determine the extent and origin of faecal ... more

    Fluorescence dyes from the pressure cooker

    The laboratory of Dr. Miriam M. Unterlass at the Institute of Materials Chemistry at TU Wien has just reported the synthesis of more than 20 different perylene bisimide dyes. This is not impressive per se. The way they prepare these compounds is though: Conventionally, perylene bisimides ar ... more

    Surface physics: How water learns to dance

    Perovskites are materials used in batteries, fuel cells, and electronic components, and occur in nature as minerals. Despite their important role in technology, little is known about the reactivity of their surfaces. Professor Ulrike Diebold's team at TU Wien (Vienna) has answered a long-st ... more

  • Authors

    Dr. Kurt Brunner

    Kurt Brunner, born in 1973 graduated in Technical Chemistry from TU Vienna before obtaining his doctorate from the University’s Institute of Chemical Engineering in 2003. While preparing his thesis, he worked on the molecular biology of fungi. Following research work conducted at the Univer ... more

    Prof. Dr. Marko D. Mihovilovic

    Marko D. Mihovilovic graduated in technical chemistry at the Vienna University of Technology in 1993, also receiving his doctorate from the same university in 1996, in the field of organic synthetic chemistry. Post-doc placements as an Erwin Schrödinger scholarship holder then followed at t ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:



Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE