q&more
My watch list
my.chemie.de  
Login  

News

Pores with a Memory

Porous polymer films with shape memory

© Wiley-VCH

08-Feb-2018: Whether for separation processes, photovoltaics, catalysis, or electronics, porous polymer membranes are needed in many fields. Membranes with micropores that switch between different shapes and/or sizes would expand the possibilities. Scientists have introduced a process that produces porous films made from shape memory polymers with precise dimensions. The shape and size of the pores can be reversibly changed with light. No mechanical deformation is needed.

Researchers from the East China University of Science and Technology in Shanghai, China; the Georgia Institute of Technology in Atlanta, USA; and Pusan National University in Pusan, South Korea have developed an unconventional strategy to prepare photoswitchable, porous films. Their success stems from a simple method based on condensation patterns known as breath figures. Breath figures are formed when water vapor condenses as a pattern of tiny droplets on a cold solid or liquid surface, like when you breathe onto a cold window. Researchers working with Shaoliang Lin and Zhiqun Lin use this effect to fabricate a block copolymer film with highly ordered honeycomb pores.

One block of the polymer network has photoresponsive side-chains with azobenzene units that change their conformation (cis–trans isomerization) in reaction to light. The other block can be crosslinked to fix the configuration of the film. Irradiation with UV light or heating changes a part of the azobenzene units to the bent cis form, irradiation with visible light causes the groups to preferentially adopt the straight trans form. If the visible light is linearly polarized, the side chains arrange themselves in parallel. This rearrangement causes displacement of the material. Careful control of the direction of polarization allows the researchers to transform the originally round micropores into a variety of different shapes, such as rounded rectangles, or rounded rhombuses.

Irradiation with UV light or heating removes the order of the side chains, returning the pores to their original shape or size. The pores can be switched repeatedly. In addition, the copolymer film can also be firstly photoconfigured to a determined pore shape, and then crosslinked to obtain a photoswitchable film with different initial pore shapes.

The researchers hope to use their new production method to make robust, switchable films for electronics, photonics, efficient separation and purification processes, and functional biomaterials for regenerative therapies.

Original publication:
Wei Wang, Dingfeng Shen, Xiao Li, Yuan Yao, Jiaping Lin, Aurelia Wang, Jiwoo Yu, Zhong Lin Wang, Suck Won Hong, Zhiqun Lin, Shaoliang Lin; "Light-Driven Shape-Memory Porous Films with Precisely Controlled Dimensions"; Angew. Chem.; 2018
Wei Wang, Dingfeng Shen, Xiao Li, Yuan Yao, Jiaping Lin, Aurelia Wang, Jiwoo Yu, Zhong Lin Wang, Suck Won Hong, Zhiqun Lin, Shaoliang Lin; "Light-Driven Shape-Memory Porous Films with Precisely Controlled Dimensions"; Angew. Chem. Int. Ed.; 2018

Facts, background information, dossiers

  • polymer membranes

More about Georgia Institute of Technology

  • News

    Are 20 percent of materials chemistry papers wrong?

    Can companies rely on the results of one or two scientific studies to design a new industrial process or launch a new product? In at least one area of materials chemistry, the answer may be yes -- but only 80 percent of the time. The replicability of results from scientific studies has beco ... more

    Paper-based supercapacitor uses metal nanoparticles to boost energy density

    Using a simple layer-by-layer coating technique, researchers from the U.S. and Korea have developed a paper-based flexible supercapacitor that could be used to help power wearable devices. The device uses metallic nanoparticles to coat cellulose fibers in the paper, creating supercapacitor ... more

    Low-cost technique converts bulk alloys to oxide nanowires

    A simple technique for producing oxide nanowires directly from bulk materials could dramatically lower the cost of producing the one-dimensional (1D) nanostructures. That could open the door for a broad range of uses in lightweight structural composites, advanced sensors, electronic devices ... more

More about Wiley-VCH

  • News

    Multifunctional platform for the delivery of gene therapeutics

    Gene editing is one of the hottest topics in cancer research. A Chinese research team has now developed a gold-nanoparticle-based multifunctional vehicle to transport the “gene scissors” to the tumor cell genome. As the authors report, their nonviral transport and release platform of gene-e ... more

    Man versus (synthesis) machine

    Who is the better experimentalist, a human or a robot? When it comes to exploring synthetic and crystallization conditions for inorganic gigantic molecules, actively learning machines are clearly ahead, as demonstrated by British Scientists in an experiment with polyoxometalates. Polyoxomet ... more

    In-mouse catalysis

    Address and deliver: A gold catalyst can be delivered to a target organ in a higher organism where it performs a chemical transformation visualized by bioimaging. This intriguing approach has been introduced by a Japanese team of scientists. It could make organometallic catalysis applicable ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:



Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE