q&more
My watch list
my.chemie.de  
Login  

News

Stem cell divisions in the adult brain seen for the first time

UZH

The figure shows an individual neural stem cell (green) and its daughter neurons (depending on the age shown in yellow, orange and red) that were generated over the course of 2 months within the adult hippocampus.

12-Feb-2018: Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain can generate new nerve cells throughout life. One of the areas where this happens is the hippocampus, a brain structure that determines many types of learning and memory, deciding what is remembered and what is forgotten.

A window into the brain

In a new study published in Science, the laboratory of Sebastian Jessberger, professor in the Brain Research Institute of the University of Zurich, has shown for the first time the process by which neural stem cells divide and newborn neurons integrate in the adult mouse hippocampus. The study, which was led by postdoc Gregor Pilz and PhD student Sara Bottes, used in vivo 2-photon imaging and genetic labeling of neural stem cells in order to observe stem cell divisions as they happened, and to follow the maturation of new nerve cells for up to two months. By observing the cells in action and over time the team showed how most stem cells divide only for a few rounds before they mature into neurons. These results offer an explanation as to why the number of newborn cells dramatically declines with advancing age.

“In the past it was deemed technically impossible to follow single cell stem cells in the brain over time given the deep localization of the hippocampus in the brain”, said Jessberger. He added that the breakthrough was only made possible by forming an interdisciplinary team. “We were fortunate that a group of collaborators, including Fritjof Helmchen from the Brain Research Institute and David Jörg and Benjamin Simons from the University of Cambridge, joined efforts to bring together their expertise in deep brain imaging and theoretical modeling, which allowed us to obtain and understand our data”.

Stem cells as therapeutic targets for brain diseases

The study answered long-standing questions in the field, but the researchers stated that this is just the beginning of many more experiments aimed at understanding how our brains are able to form new nerve cells throughout life. “In the future, we hope that we will be able to use neural stem cells for brain repair – for example for diseases such as cognitive aging, Parkinson’s and Alzheimer’s disease or major depression”, summarizes Jessberger.

Other researchers involved were Marion Betizeau and Stefano Carta from the Brain Research Institute, UZH.

Original publication:
Gregor-Alexander Pilz, Sara Bottes, Marion Betizeau, David J. Jörg, Stefano Carta, Benjamin D. Simons, Fritjof Helmchen, Sebastian Jessberger; "Live imaging of neurogenesis in the adult mouse hippocampus"; Science; 9 February 2018.

Facts, background information, dossiers

  • brain
  • stem cells
  • neurons
  • neural stem cells
  • nerve cells
  • hippocampus
  • cell division

More about Universität Zürich

  • News

    The first precise measurement of a single molecule's effective charge

    For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics. Electrical charge is one of the key properties that allows molecule ... more

    Cluster of Resistant Tuberculosis Pathogen Discovered

    Between February and November 2016, the Institute of Medical Microbiology at the University of Zurich discovered a multidrug-resistant Mycobacterium tuberculosis in eight refugees arriving in Europe from the Horn of Africa. The analyses provided an impulse for launching a transnational inve ... more

    Identifying the right target

    Biochemists at the University of Zurich have used cryo-electron microscopy to determine the detailed architecture of the chloride channel TMEM16A. This protein is a promising target for the development of effective drugs to treat cystic fibrosis. Cystic fibrosis is a severe hereditary dise ... more

  • q&more articles

    From the reveller to the lark

    Because of their genes, some people come into the world either as a lark (early riser) or a night-owl (late sleeper). In addition, however, even in normal people, such ”chronotype“ changes with age. Starting at puberty they develop into revellers. At the age of 20 a change occurs and the ... more

  • Authors

    Dr. Steven A. Brown

    Steven B. Brown studied biochemistry at Harvard College, Cambridge, Massachusetts, USA. In 1997 he received his doctorate in the Department of Biological Chemistry and Molecular Pharmacology, Harvard University, Cambridge, Massachusetts, USA. From 1998 – 2005 he was a postdoctoral fellow at ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:



Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE