My watch list


Breakthrough for peptide medication

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

Michael Weinmueller / TUM

Cyclic hexapeptide in its bioactive form with the integrin-binding tripeptide sequence arginine-glycine-aspartic acid: Green spheres represent carbon atoms, red oxygen atoms, blue nitrogen atoms and white hydrogen atoms. Yellow spheres represent the two N-methyl groups and dashed orange lines show the two intramolecular hydrogen bonds. Arrangement (clockwise): arginine (top), glycine, aspartic acid, alanine, N-methylated alanine, N-methylated D-valine.

22-Feb-2018: Peptides, short amino acid chains that control many functions in the human body, represent a billion-dollar market, also in the pharmaceutical industry. But, normally these medications must be injected. A research team led by the Technical University of Munich (TUM) has now determined how peptides can be designed so that they can be easily administered as a liquid or tablet.

Peptides are short chains of amino acids. In the human body, they control diverse functions as signaling molecules. Well-known examples include insulin, which comprises 51 amino acid building blocks and controls the metabolism of sugar, or cyclosporine, an eleven amino acid-peptide that has been proven to suppress organ rejection after transplants.

“Peptides are wonderfully well-suited as medication,” says Horst Kessler, Carl von Linde Professor at the Institute for Advanced Study at TU Munich. “The body already uses them as signaling molecules, and when they have done their job, they can be recycled by the body – no accumulation, no complicated detoxification.”

Worldwide, there are currently some 500 peptide-based medications in clinical trials. A handful of peptide medications are already commanding revenues in the billions. But the fact that they cannot be administered as tablets is a decisive disadvantage of almost all substances in this category.

A hurdle race

Since proteins are an important part of the diet, the stomach and intestines harbor countless enzymes that break peptide bonds. No medication based on unmodified peptides would have a chance to survive the passage through the gastrointestinal tract.

Yet even when appropriately modified peptide compounds make it through the stomach intact, another hurdle awaits them: The cells of the intestinal walls prevent their absorption into the blood. That is why these kinds of active agents are generally only be administered by injection.

The path through the wall

The team initially approached these challenges using a ring-shaped model peptide. It comprised six molecules of the simplest amino acid, alanine. The scientists used it to investigate what effect replacing hydrogen atoms of the peptide bonds with methyl groups has on oral availability.

This resulted in over 50 variations. Cellular tests by collaboration partners in Israel showed that only specific peptide variants are absorbed very quickly. “It appears that cyclic hexapeptides with a specific structure are able to use an existing transport system,” says Prof. Kessler.

The biological effect

The team chose integrin receptors that control a variety of functions on the cell surface as a target for their peptides. A sequence of the three amino acids arginine, glycine and aspartic acid is the key to the docking at these receptors. Kessler's co-workers incorporated the key sequence at different positions of their model peptide, thus creating new variants.

However, both the negatively charged side chain of aspartic acid and the positively charged arginine turned out to be knock-out criteria for using the transport system. The team nevertheless managed to mask the charged groups of both amino acids with protecting groups.

Although with this the peptide initially loses its ability to bind to the target molecule, if the right protective groups are selected, they are split off again by enzymes that are ubiquitous in the blood. The pharmaceutical effect is thus restored upon arrival at their destination.

Proof of oral availability

Cell tests have shown that the new hexapeptide indeed has a biological effect. In low doses it stimulates the growth of blood vessels. When mice are fed the masked hexapeptide, the effect is the same as in those that were injected with the unmasked hexapeptide.

“In the past, experts have designated the oral availability of peptide-based medications as the ‘holy grail of peptide chemistry.’ Our work provides a strategy for solving the challenges of stability, absorption in the body and biological effectiveness," says Kessler. "In the future, this will greatly simplify the creation of peptide medication that can be easily given in fluid or tablet form.”

Original publication:
"Overcoming the lack of oral availability of cyclic hexapeptides: Design of a selective and orally available ligand for the integrin alphaVbeta3"; Michael Weinmüller et al.; Angewandte Chemie International Edition; 18.12.2017, 56, 16405-16409
"Improving oral bioavailability of cyclic peptides by N-methylation"; Andreas F. B. Räder, Florian Reichart, Michael Weinmüller, Horst Kessler; Bioorganic & Medicinal Chemistry; 2017, in press
"Exploring the Role of RGD-Recognizing Integrins in Cancer"; Markus Nieberler, Ute Reuning, Florian Reichart, Johannes Notni, Hans-Jürgen Wester, Markus Schwaiger, Michael Weinmüller, Andreas Räder, Katja Steiger and Horst Kessler; Cancers; 2017, 9, 116

Facts, background information, dossiers

  • peptides
  • peptide drugs
  • active agents

More about TU München

  • News

    Brown adipose tissue made transparent

    Brown adipose tissue has played a key role in prevention research since its presence was first documented in adults. However, there was no non-invasive method of measuring its heat generation. A team at the Technical University Munich (TUM) and the Helmholtz Zentrum München has now succeede ... more

    Histology in 3D

    To date, examining patient tissue samples has meant cutting them into thin slices for histological analysis. This might now be set to change – thanks to a new staining method devised by an interdisciplinary team from the Technical University of Munich (TUM). This allows specialists to inves ... more

    Watching myelin patterns form

    Nerve fibers are surrounded by a myelin sheath. Scientists at the Technical University of Munich (TUM) have now made the first-ever “live” observations of how this protective layer is formed. The team discovered that the characteristic patterns of the myelin layer are determined at an early ... more

  • q&more articles


    The structure of the big chemical and pharmaceutical companies has changed. Traditional centralised research departments conducting fundamental research have fallen victim to economic considerations. In exchange, young, dynamic start-up enterprises are increasingly brightening up the scene. ... more

  • Authors

    Prof. Dr. Arne Skerra

    Arne Skerra, born in 1961, studied chemistry at the Technical University of Darmstadt and obtained his doctoral degree as Dr. rer. nat. at the Gene Center of the Ludwig-Maximilians Univer­sity Munich in 1989. After staying at the MRC Laboratory of Molecular Biology in Cambridge, UK, and the ... more

    Dr. Thomas Letzel

    Thomas Letzel, born 1970, studied chemistry (1992–1998) at the TU Muenchen and the LMU Muenchen. He acquired his doctorate in 2001 with an environmental-analytical subject at the TU Muenchen, followed by a two years' postdoc stay at the Vrijen Universiteit Amsterdam. He qualified as a profe ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE