q&more
My watch list
my.chemie.de  
Login  

News

Defective immune cells in the brain cause Alzheimer’s disease

Scientists are studying the role of immune cell activation in Alzheimer's disease

GDJ, pixabay.com, CC0

09-Jan-2019: Mutations of the TREM2 gene can significantly increase the risk of Alzheimer's disease. Scientists from the German Center for Neurodegenerative Diseases (DZNE) and the Ludwig-Maximilians-University Munich now shed light on the reasons why TREM2 is so important for brain health. They show that TREM2 activates brain immune cells to eliminate toxic deposits, first and foremost in the early stages of the disease. The study is published in the journal “Nature Neuroscience” and has important implications for the development of new drugs.

A hallmark of Alzheimer's disease is the formation of toxic deposits in the brain, so-called plaques. Specialized immune cells termed microglia protect the brain by clearing it from these toxic debris. TREM2 is a key factor in activating microglia and thus serves as an important target for novel therapeutic approaches. To further explore these therapeutic options, the Munich scientists undertook a detailed analysis of disease development in mice with and without a functional TREM2 gene.

In mice with healthy TREM2, microglia cluster around small emerging plaques early in the disease process and prevent them from enlarging or spreading. "We were able to show that microglia are specifically attracted to amyloid plaques. They surround individual plaques and engulf them piece by piece," explains lead investigator Christian Haass, speaker of the DZNE's Munich site, and a professor at the Ludwig-Maximilians-University Munich. In contrast, in mice lacking TREM2, microglia were unable to carry out this important task. Therapeutic activation of TREM2 in an early stage of the disease could thus help counteract the formation of toxic amyloid-beta protein aggregates.

However, the study results also call for caution when implementing such a therapy. While TREM2 prevents plaque formation early in disease progression, it may have the opposite effect later on. In more advanced stages of the disease, the plaques grew faster in mice with functional TREM2 than in mice lacking the corresponding gene. The researchers discovered that this could be explained by the fact that TREM2 induces microglia to produce a substance called ApoE, which enhances aggregate formation. "Our study shows that we have to be extremely careful and investigate a new therapeutic approach thoroughly in animal models before testing it on humans," says Haass. "According to our findings, it could have dramatic consequences if we over-activate microglia."

"In the future, it will be important to treat Alzheimer’s disease in a stage-specific manner," Haass explains. According to the present study, for example, activating microglia via TREM2 would be a strategy that should be applied early in disease progression. Haass and his colleagues are currently working on the development of antibodies that stabilize TREM2 and thereby activate microglia. The scientists are now using several animal models and different experimental approaches to test possible therapeutic strategies and combination therapies with other drugs.

"All important genetic alterations that increase the risk of Alzheimer's disease lead to changes in plaque formation," Haass explains. This suggests that these protein aggregates are the cause of the disease. The current study provides hope that it is possible to counteract plaque formation by activating TREM2, and at the same time highlights potential risks that scientists need to take into account when pursuing such an approach.

Original publication:
Parhizkar et al.; "Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE"; Nature Neuroscience; 2019

Facts, background information, dossiers

  • Alzheimer's disease
  • immune cells
  • gene mutations
  • microglia
  • protein aggregates
  • plaques

More about LMU

  • News

    Molecular motors: Chemical carousel rotates in the cold

    LMU chemists have developed the first molecular motor that can be powered by light alone. Its operation is therefore essentially independent of the temperature. Molecular motors, which rotate unidirectionally in response to an external energy input, constitute an important class of componen ... more

    Biomimetic chemistry: Carbohydrate capture

    LMU chemist Professor Ivan Huc, who heads a research group devoted to the study of Biomimetic Supramolecular Chemistry, has designed and synthesized a molecular structure which features a helical binding pocket that is made-to-measure for the recognition and capture of xylobiose, a member o ... more

    The biological role of europium

    Rare earth elements (REEs) are an indispensable component of the digital technologies that are now an integral part of our everyday life. Yet their biological role has been discovered only recently. A few years ago it became apparent that these metals are essential elements for methano- and ... more

  • Authors

    Prof. Dr. Thomas Carell

    Thomas Carell graduated in chemistry, completing his doctorate at the Max Planck Institute for Medical Research under the tutelage of Prof. Dr Dr H. A. Staab. Following a research position in the USA, he accepted a position at ETH Zurich, setting up his own research group in the Laboratory ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:



Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE