My watch list


Record high pressure squeezes secrets out of osmium

X-ray experiments reveal peculiar behaviour of the most incompressible metal on Earth

Elena Bykova/University of Bayreuth

A schematic of the pressure chamber of the double-stage diamond anvil cell: The osmium sample is just 3 microns small and sits between two semi-balls made of nanocristalline diamond of extraordinary strength.

26-Aug-2015: An international team of scientists led by the University of Bayreuth and with participation of DESY has created the highest static pressure ever achieved in a lab: Using a special high pressure device, the researchers investigated the behaviour of the metal osmium at pressures of up to 770 Gigapascals (GPa) – more than twice the pressure in the inner core of the Earth, and about 130 Gigapascals higher than the previous world record set by members of the same team. Surprisingly, osmium does not change its crystal structure even at the highest pressures, but the core electrons of the atoms come so close to each other that they can interact – contrary to what is usually known in chemistry. This fundamental result published in the journal Nature has important implications for understanding physics and chemistry of highly compressed matter, for design of materials to be used at extreme conditions, and for modelling the interiors of giant planets and stars.

Metallic osmium (Os) is one of the most exceptional chemical elements, having at ambient pressure the highest known density of all elements, one of the highest cohesive energies, melting temperatures, and a very low compressibility – it is almost as incompressible as diamond. Due to its hardness, osmium finds applications in alloys used for instance as electrical contacts, wear-resistant machine parts and tips for high-quality ink pens.

“High pressure is known to radically affect properties of chemical elements: metals like sodium may become transparent insulators; gases like oxygen solidify and become electrical conductors – and even superconductors,” explains Natalia Dubrovinskaia from the University of Bayreuth, together with Leonid Dubrovinsky the main author of the study. “As any other material subjected to very high compression, osmium is expected to change its crystal structure.”

For their experiments, the scientists used a device for generating ultra-high static pressures developed by Dubrovinsky and Dubrovinskaia at Bayreuth. The device uses micro-anvils of only 10 to 20 micrometres (a micrometre is a thousandths of a millimetre) in diameter which are made of nanocrystalline diamond. These nanocrystals, which are diamond grains of a nano-size, are bound together forming a bulk micro-anvil. The many grain boundaries make the nanocrystalline anvils even harder than single crystal diamonds, extending the range of static pressure in experiments from about 400 GPa to 770 GPa at room temperature.

For probing the samples under these extreme conditions, the team used high-brilliance X-rays from the synchrotron sources PETRA III at DESY, ESRF in France and APS in the U.S. The team found that Osmium shows unprecedented structural stability and keeps its crystal structure even at huge pressures of about 770 GPa.

While the volume of the osmium unit cell steadily shrinks with rising pressure, very accurate X-ray diffraction experiments revealed anomalies in the behaviour of the lattice parameters describing the unit cell. Usually, changes in materials properties under pressure are associated with modifications in the configurations of the outer (valence) electrons. But in case of highly compressed osmium the reason for the observed structural anomaly is an interaction between the inner (core) electrons, as suggested by state-of-the-art theoretical calculations. “This work demonstrates that ultra-high static pressures can force the core electrons to interplay,” explains Dubrovinsky. “The ability to affect the core electrons even in such incompressible metals as osmium in static high-pressure experiments opens up exciting opportunities in searching for new states of matter.”

The experiments pave the way for investigating materials under conditions of the inner core of giant planets. “In the last 20 years, astronomers found more than thousand planets around other stars, nearly all of them bigger than our Earth,” says co-author Hanns-Peter Liermann from DESY, responsible for the beamline P02 at PETRA III, where some of the experiments took place. “With the newly developed double-stage diamond anvil cell and with the very focused high intensity X-ray spot at PETRA III – or later at the X-ray laser European XFEL that is currently being constructed in the Hamburg area – we can probe a variety of rocky planet compositions under most extreme conditions and will learn a lot about the composition and evolution of such planets.”

Original publication:
The most incompressible metal osmium at static pressures above 750 GPa;L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, M. Bykov, V. Prakapenka, C. Prescher, K. Glazyrin, H.-P. Liermann, M. Hanfland, M. Ekholm, Q. Feng, L. V. Pourovskii, M. I. Katsnelson, J. M. Wills, and I. A. Abrikosov; Nature (2015)

Facts, background information, dossiers

More about Uni Bayreuth

  • q&more articles

    Authentic food

    Authentic food is growing in popularity with consumers. In a heavily industrialized market, a regional, single-source and/or specially manufactured product is increasingly becoming a guarantor of greater value. In the premium segment in particular, economically motivated “food fraud” can re ... more

    More than honey?

    For thousands of years, the word “honey” has been synonymous with an all-natural, healthy food. Unsurprisingly, honey has also enjoyed unwavering popularity with consumers – and especially in times when organic food and a healthy lifestyle are more in vogue than ever before. more

    What Are We Eating?

    What ends up on our plates? We used to think we knew – until we were disabused of this notion in early 2013. Instead of beef, there had been large-scale use of processed horsemeat, especially in frozen products and mincemeat. Although this posed no hazard to health, the damage was enormous, ... more

  • Authors

    Dr. Christopher Igel

    completed his undergraduate studies in biochemistry at the University of Bayreuth from 2009 to 2013. He completed his bachelor’s dissertation entitled “Honey Analysis Using NMR” at the BIOmac research centre under the tutelage of Prof. Dr. Schwarzinger. more

    Wolfrat Bachert

    commenced his undergraduate studies in mechanical engineering at TU Dresden before moving to the University of Bayreuth in 2009 to study biology. In 2013, he completed his bachelor dissertation in the Dept. of Biochemistry under the tutelage of Prof. Dr. Wulf Blankenfeldt on the subject of ... more

    Prof. Dr. Stephan Clemens

    Stephan Clemens, Jg. 1963, studied biology in Münster and Brighton, then acquired his doctorate in Münster. Since his postdoc-stay at the University of California San Diego, his scientific interest has been mainly targeted at metal homoeostasis in plants. He uses the models Arabidopsis thal ... more

More about Deutsches Elektronen-Synchroton DESY

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE