My watch list


Shaping light lets 2D microscopes capture 4D data

Invention adds new dimension to fluorescent microscopy

Landes Research Group/Rice University

Rice University researchers have created a method to design custom masks that transform 2D fluorescent microscopy images into 3D movies.

20-Feb-2019: Rice University researchers have added a new dimension to their breakthrough technique that expands the capabilities of standard laboratory microscopes.

Two years ago, the Rice lab of chemist Christy Landes introduced super temporal resolution microscopy, a technique that allowed researchers to image fluorescent molecules 20 times faster than traditional lab cameras normally allow. They've now developed a general method to let a microscope capture 3D spatial information along with the fourth dimension, molecular movement over time.

This, they say, will help scientists who study dynamic processes view where molecules of interest are located and how fast they move -- for example, within living cells.

The Rice method to expand the capabilities of existing wide-field fluorescence microscopes is detailed in the team's open-access paper.

It describes the creation of custom phase masks: transparent, spinning disks that manipulate light's phase to change the shape of the image captured by the microscope's camera. The shape contains information about a molecule's 3D position in space and how it behaves over time within the camera's field of view.

A phase mask turns what seems like an inconvenience, the blurry blob in a microscope image, into an asset. Scientists give this blob a name -- point spread function -- and use it to get details about objects below the diffraction limit that are smaller than all visible light microscopes are able to see.

The original work used a rotating phase mask that transformed light from a single fluorescent molecule into what the researchers called a rotating double helix. The captured image appeared on the camera as two glowing disks, like the lobes of a barbell. In the new work, the rotating barbells let them see not only where molecules were in three-dimensional space, but also gave each molecule a time stamp.

The heart of the new work lies in algorithms by lead author and Rice electrical and computer engineering alumnus Wenxiao Wang. The algorithms make it practical to design custom phase masks that modify the shape of the point spread function.

"With the double helix phase mask, the time information and spatial information were connected," said co-author Chayan Dutta, a postdoctoral researcher in Landes' lab. "The lobes' rotation could express either 3D space or fast time information, and there was no way to tell the difference between time and space."

Better phase masks solve that problem, he said. "The new phase mask design, which we call a stretching lobe phase mask, decouples space and time," Dutta said. "When the targets are at different depths, the lobes stretch farther apart or come closer, and the time information is now encoded just in the rotation."

The trick is to manipulate light at the spinning phase mask to optimize the pattern for different depths. That is accomplished by the refractive pattern programmed into the mask by the algorithm. "Each layer is optimized in the algorithm for different detection depths," said graduate student and co-author Nicholas Moringo. "Where before, we could see objects in two dimensions over time, now we can see all three spatial dimensions and fast time behavior simultaneously."

"Wide-field fluorescence microscopes are used in many fields, especially cell biology and medical imaging," Landes said. "We are just starting to demonstrate how manipulating light's phase within a microscope is a reasonably simple way to improve space and time resolution compared to developing new fluorescent tags or engineering new hardware improvements."

One important outcome that could have broad appeal, she said, is that the researchers generalized the phase mask design so researchers can fabricate masks to create virtually any arbitrary pattern. To demonstrate, the group designed and fabricated a mask to create a complex point spread function that spells out RICE at different focal depths. A video shows the ghostly letters appear and disappear as the microscope moves to different depths above and below the focal plane.

Such flexibility will be useful for applications like analyzing processes inside living cancer cells, a project the lab hopes to pursue soon with Texas Medical Center partners.

"If you have a cell on a glass slide, you'll be able to understand where objects in the cell are in relationship to each other and how fast they move," Moringo said. "Cameras aren't fast enough to capture all of what happens in a cell, but our system can."

Original publication:
Wenxiao Wang, Fan Ye, Hao Shen, Nicholas A. Moringo, Chayan Dutta, Jacob T. Robinson, and Christy F. Landes; "Generalized method to design phase masks for 3D super-resolution microscopy"; Optics Express; 2019

Facts, background information, dossiers

  • laboratory microscopes
  • cell biology
  • molecular mechanics

More about Rice University

  • News

    Nitrogen gets in the fast lane for chemical synthesis

    Rice University scientists have given organic chemists a boost with their latest discovery of a one-step method to add nitrogen to compounds for drugs, pesticides, fertilizers and other products. Rice synthetic organic chemist László Kürti said the method is a major step forward as it quick ... more

    Light triggers gold in unexpected way

    Rice University researchers have discovered a fundamentally different form of light-matter interaction in their experiments with gold nanoparticles. They weren't looking for it, but students in the lab of Rice chemist Stephan Link found that exciting the microscopic particles just right pro ... more

    Moths and magnets could save lives

    A new technology that relies on a moth-infecting virus and nanomagnets could be used to edit defective genes that give rise to diseases like sickle cell, muscular dystrophy and cystic fibrosis. Rice University bioengineer Gang Bao has combined magnetic nanoparticles with a viral container d ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE