q&more
My watch list
my.chemie.de  
Login  

News

Novel optogenetic tool

Switching specific G-protein-coupled signalling pathways on and off

© RUB, Kramer

The melanopsins of men and mice respond differently to short blue light pulses.

12-Apr-2016: Blue on, yellow off: using different-coloured light, researchers are able to switch signalling pathways in the brain on and off.

Researchers in Bochum have utilised light-sensitive proteins from nerve cells of the eye – so-called melanopsins – to switch on specific signalling pathways in brain cells with high temporal precision. Depending on what kind of melanopsin the researchers used, signalling pathways were switched on either transiently or sustained. In mammals, the protein typically regulates the circadian rhythm.

Dr Katharina Spoida, Dennis Eickelbeck, Prof Dr Stefan Herlitze and Dr Olivia Masseck from the Department of General Zoology and Neurobiology at the Ruhr-Universität Bochum (RUB), together with other colleagues from Bochum and researchers from the University of Osnabrück report in the journal “Current Biology”.

Comparison: melanopsin of mice and men

The researchers describe, for example, that melanopsins of mice and of men respond differently to light stimulation. Short blue light pulses activate mouse melanopsin permanently, but human melanopsin only temporarily. Both proteins can be switched off with yellow light.

“These light-sensitive proteins are the ideal basis for the development of optogenetic tools,” says Dennis Eickelbeck. In optogenetics, researchers make use of genetic manipulation to couple light-sensitive proteins to other proteins, thus generating receptors that can be controlled by light, for example.

Decoding G-protein signalling pathways

In the next step, the RUB researchers wish to develop G-protein-coupled receptors that can be activated by light. These receptors control a number of functions in the body. Which signalling pathway is switched on in the cell is determined by whether a G-protein is activated transiently or sustained. Changes to the G-proteins’ temporal activation patterns may result in serious diseases, for example obesity or cardio-vascular diseases.

Insights into the complex serotonin system

By controlling selected individual signalling pathways using optogenetic methods, the role they play in the healthy organism can be determined. Researchers may also be able to find out which signalling pathways affect the occurrence of certain diseases.

“In follow-up studies, we intend to couple various melanopsins to serotonin receptors and analyse in greater detail the way diseases are triggered by disturbances of the temporal sequence of G-protein signals,” reports Katharina Spoida, who was in charge of the current study, together with Dennis Eickelbeck.

Original publication:
Spoida et al.; "Melanopsin variants as intrinsic optogenetic on and off switches for transient versus sustained activation of G Protein pathways"; Current Biology; 2016

Facts, background information, dossiers

  • optogenetics
  • brain
  • melanopsin
  • proteins
  • G-proteins

More about Ruhr-Universität Bochum

  • News

    Researchers use cyanobacteria for the production of chemicals

    In order to manufacture chemical products in the industry, a high energy input is required, which consumes mainly our fossil resources. At RUB, two scientists are researching into a resource-efficient and, consequently, sustainable approach. Prof Dr Robert Kourist from the junior research g ... more

    Assessing quality of flowing waters with DNA analyses

    The quality of waters can be assessed using of the organisms occurring therein. This approach often results in errors, because many species look alike. Therefore, new methods focus on DNA analyses instead. Biologists at the Ruhr-Universität Bochum (RUB) have optimised the process so that th ... more

    Water ice renders short-lived molecule sustainable

    “Antiaromatic compounds” is what chemists call a class of ring molecules which are extremely instable – the opposite of the highly stable aromatic molecules. Because they exist for mere split seconds, they can only be detected by extremely demanding, ultrafast methods. Together with colleag ... more

  • Authors

    Prof. Dr. Klaus Gerwert

    Klaus Gerwert studied physics in Münster and received his doctorate in 1985 in biophysical chemistry in Freiburg. After positions at the Max Planck Institute of Molecular Physiology in Dortmund and the Scripps Research Institute in La Jolla, USA, he accepted a university professorship in bi ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:



Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE