q&more
My watch list
my.chemie.de  
Login  

News

Eco-Friendly Nanoparticles for Artificial Photosynthesis

Quantum dots of indium phosphide and zinc sulfide using sunlight

makamuki0; pixabay.com; CC0

02-Oct-2018: Researchers at the University of Zurich have developed a nanoparticle type for novel use in artificial photosynthesis by adding zinc sulfide on the surface of indium-based quantum dots. These quantum dots produce clean hydrogen fuel from water and sunlight – a sustainable source of energy. They introduce new eco-friendly and powerful materials to solar photocatalysis.

Quantum dots are true all-rounders. These material structures, which are only a few nanometers in size, display a similar behavior to that of molecules or atoms, and their form, size and number of electrons can be modulated systematically. This means that their electrical and optical characteristics can be customized for a number of target areas, such as new display technologies, biomedical applications as well as photovoltaics and photocatalysis.

Fuel production using sunlight and water

Another current line of application-oriented research aims to generate hydrogen directly from water and solar light. Hydrogen, a clean and efficient energy source, can be converted into forms of fuel that are used widely, including methanol and gasoline. The most promising types of quantum dots previously used in energy research contain cadmium, which has been banned from many commodities due to its toxicity. The team of Greta Patzke, Professor at the Department of Chemistry of the University of Zurich (UZH), and scientists from Southwest Petroleum University in Chengdu and the Chinese Academy of Sciences have now developed a new type of nanomaterials without toxic components for photocatalysis.

Indium-containing core with a thin layer of zinc sulfide

The three-nanometer particles consist of a core of indium phosphide with a very thin surrounding layer of zinc sulfide and sulfide ligands. “Compared to the quantum dots that contain cadmium, the new composites are not only environmentally friendly, but also highly efficient when it comes to producing hydrogen from light and water,” explains Greta Patzke. Sulfide ligands on the quantum dot surface were found to facilitate the crucial steps involved in light-driven chemical reactions, namely the efficient separation of charge carriers and their rapid transfer to the nanoparticle surface.

Great potential for eco-friendly applications

The newly developed cadmium-free nanomaterials have the potential to serve as a more eco-friendly alternative for a variety of commercial fields. “The water-soluble and biocompatible indium-based quantum dots can in the future also be tested in terms of biomass conversion to hydrogen. Or they could be developed into low-toxic biosensors or non-linear optical materials, for example,” adds Greta Patzke. She will continue to focus on the development of catalysts for artificial photosynthesis within the University Research Priority Program “LightChEC”. This interdisciplinary research program aims to develop new molecules, materials and processes for the direct storage of solar light energy in chemical bonds.

Original publication:
Shan Yu, Xiang-Bing Fan, Xian Wang, Jingguo Li, Qian Zhang, Andong Xia, Shiqian Wei, Li-Zhu Wu, Ying Zhou, and Greta R. Patzke; "Efficient Photocatalytic Hydrogen Evolution with Ligand Engineered All-Inorganic InP and InP/ZnS Colloidal Quantum Dots"; Nature Comm.; 2018

Facts, background information, dossiers

  • indium phosphide
  • photocatalysis
  • water splitting

More about Universität Zürich

  • News

    Special Antibodies Could Lead to HIV Vaccine

    Around one percent of people infected with HIV produce antibodies that block most strains of the virus. These broadly acting antibodies provide the key to developing an effective vaccine against HIV. Researchers from the University of Zurich and the University Hospital Zurich have now shown ... more

    Protein modifications pointing to cancer

    Researchers from the University of Zurich can, for the first time, precisely characterize the protein modification ADP-ribosylation for all proteins in a tissue sample. The changes, which are a typical reaction to stress, provide information about the condition of a cell. Together with the ... more

    New Method Refines Cell Sample Analysis

    Researchers at the University of Zurich have developed a novel method which increases more than tenfold the number of proteins that can be visualized per sample, making it possible to generate a comprehensive map of cellular organization across the various cellular states. This highly sophi ... more

  • q&more articles

    From the reveller to the lark

    Because of their genes, some people come into the world either as a lark (early riser) or a night-owl (late sleeper). In addition, however, even in normal people, such ”chronotype“ changes with age. Starting at puberty they develop into revellers. At the age of 20 a change occurs and the ... more

  • Authors

    Dr. Steven A. Brown

    Steven B. Brown studied biochemistry at Harvard College, Cambridge, Massachusetts, USA. In 1997 he received his doctorate in the Department of Biological Chemistry and Molecular Pharmacology, Harvard University, Cambridge, Massachusetts, USA. From 1998 – 2005 he was a postdoctoral fellow at ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:



Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE