q&more
My watch list
my.chemie.de  
Login  

News

Diversity in the brain

How millions of neurons become unique

Universität Basel, Biozentrum

Different gene variants ensure the diversity of neurons by chance.

27-Sep-2018: How is it possible that so many different and highly specific neurons arise in the brain? A mathematic model developed by researchers from the University of Basel’s Biozentrum demonstrates that different variants of genes enable such a random diversity. The scientists describe in “Cell Reports” that despite countless numbers of newly formed neurons, the genetic variants equip neurons individually and precisely for their specific function.

The brain is our body’s most complex organ and consists of about 100 billion neurons. For the error-free transmission of information and for proper functioning, the different cells must be programmed in a way that they connect with the correct interaction partner. Genes determine the function of the neurons. The approximately 30,000 different genes alone, however, are not sufficient to create the necessary diversity of individual neurons.

Attila Becskei’s team at the Biozentrum, University of Basel, has investigated embryonic stem cells during their maturation to neurons and developed a mathematical model of their development. It demonstrates how the observed neuronal diversity and precision is achieved by gene variants, so-called isoforms.

Gene variants ensure individuality

The different variants of single genes enable the development of a great diversity of individual neurons. “Only the combination of isoforms makes it possible that such diverse populations of neurons are generated by a rather limited number of genes. The combinations of the isoforms are chosen randomly. This random process, however, can result in great variations in the number of expressed isoforms in the individual cells,” says Becskei. However, it is important to have the same or a similar number of expressed genes for the neurons to interact specifically with other neurons.

Exclusiveness despite numbers

The development of individual neurons is a kind of mass production with random release. Millions of neurons are formed just like on an assembly line. But how can precision be achieved in this process? The result surprised the researchers: “Our mathematical model demonstrates that combinatorial diversity and precision are not mutually opposing phenomena but rather work together, hand in hand,” explains Becskei. Contrary to previous expectations, the number of different isoforms in the cell and exclusive precision increase simultaneously during the maturation of the neurons. In short: the more isoform variants, the more exclusive and evenly distributed they are in the individual neurons.

As each gene is expressed differently and not all have various isoforms, the findings cannot be applied to all genes. In the future, the Becskei research group plans to investigate more genes and study the strategies that ensure the individuality of neurons. Which function is linked with the uniqueness of each neuron is another question to pursue.

Original publication:
Takeo Wada, Sandrine Wallerich, and Attila Becskei; "Stochastic gene choice during cellular differentiation"; Cell Reports; 2018

Facts, background information, dossiers

  • nerve cells
  • genes
  • neurons
  • Universität Basel
  • gene variants
  • embryonic stem cells

More about Universität Basel

  • News

    Harmless or hormone disorder?

    Drinking excessive amounts of fluids can be a medically unremarkable habit, but it could also signify a rare hormone disorder. A new procedure now enables a fast and reliable diagnosis. Drinking more than three liters per day with the equivalent increase in urination is regarded as too much ... more

    New approach to terpene syntheses

    Terpenes are natural products that are often very difficult to synthesize in the laboratory. Chemists from the University of Basel have now developed a synthesis method that mimics nature. The decisive step takes place inside a molecular capsule, which enables the reaction. Terpenes are the ... more

    Enigma of fatty acid metabolism solved

    Fats are essential for our body. The core components of all fats are fatty acids. Their production is initiated by the enzyme ACC. Researchers at the University of Basel’s Biozentrum have now demonstrated how ACC assembles into distinct filaments. As the researchers report in “Nature,” the ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:



Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE