q&more
My watch list
my.chemie.de  
Login  

News

Man versus (synthesis) machine

Active machine learning for the discovery and crystallization of gigantic polyoxometalate molecules

04-Aug-2017: Who is the better experimentalist, a human or a robot? When it comes to exploring synthetic and crystallization conditions for inorganic gigantic molecules, actively learning machines are clearly ahead, as demonstrated by British Scientists in an experiment with polyoxometalates.

Polyoxometalates form through self-assembly of a large number of metal atoms bridged by oxygen atoms. Potential uses include catalysis, electronics, and medicine. Insights into the self-organization processes could also be of use in developing functional chemical systems like "molecular machines".

Polyoxometalates offer a nearly unlimited variety of structures. However, it is not easy to find new ones, because the aggregation of complex inorganic molecules to gigantic molecules is a process that is difficult to predict. It is necessary to find conditions under which the building blocks aggregate and then also crystallize, so that they can be characterized.

A team led by Leroy Cronin at the University of Glasgow (UK) has now developed a new approach to define the range of suitable conditions for the synthesis and crystallization of polyoxometalates. It is based on recent advances in machine learning, known as active learning. They allowed their trained machine to compete against the intuition of experienced experimenters. The test example was Na6[Mo120Ce6O366H12(H2O)78]·200 H2O, a new, ring-shaped polyoxometalate cluster that was recently discovered by the researchers' automated chemical robot.

In the experiment, the relative quantities of the three necessary reagent solutions were to be varied while the protocol was otherwise prescribed. The starting point was a set of data from successful and unsuccessful crystallization experiments. The aim was to plan ten experiments and then use the results from these to proceed to the next set of ten experiments - a total of one hundred crystallization attempts.

Although the flesh-and-blood experimenters were able to produce more successful crystallizations, the far more "adventurous" machine algorithm was superior on balance because it covered a significantly broader domain of the "crystallization space". The quality of the prediction of whether an experiment would lead to crystallization was improved significantly more by the machine than the human experimenters. A series of 100 purely random experiments resulted in no improvement. In addition, the machine discovered a range of conditions that led to crystals which would not have been expected based on pure intuition. This "unbiased" automated method makes the discovery of novel compounds more probably than reliance on human intuition. The researchers are now looking for ways to make especially efficient "teams" of man and machine.

Original publication:
Vasilios Duros , Jonathan Grizou , Weimin Xuan , Zied Hosni , De‐Liang Long , Haralampos N. Miras , Leroy Cronin; "Human versus Robots in the Discovery and Crystallization of Gigantic Polyoxometalates"; Angew. Chem. Int. Ed.; 2017

Facts, background information, dossiers

  • automated synthesis

More about University of Glasgow

  • News

    Bacteria block transmission of Zika and Dengue viruses

    Scientists at the University of Glasgow have found a bacterial strain which blocks dengue and Zika virus transmission from mosquitoes.  In the new study scientists show that a novel strain of the inherited bacteria Wolbachia strongly blocks transmission of dengue and Zika virus among infect ... more

More about Wiley-VCH

  • News

    Two new ways to fluorinated structures

    Fluorinated structures make up more than 20 percent of modern drugs, but benign and fast fluorination schemes are scarce. In a study scientists have now combined dynamic kinetic resolution and nucleophilic fluorination for the asymmetric synthesis of florfenicol, a veterinary antibiotic. Af ... more

    An Elastic Puff of Air

    Airy, Airier, Aerogel. Until now, brittleness has limited the practical application of these delicate solids, which consist almost entirely of air-filled pores. This may now change: Japanese researchers have now introduced extremely elastic aerogels that are easy to process and can be produ ... more

    Tailored Polymers from a Printer

    An ever-growing number of coatings, including varnishes and printing inks, as well as tooth fillings, are cured with light. Yet, homogenous, tailored, polymer networks cannot be produced, and the materials tend to be brittle, which limits the use of photopolymers in applications like 3D pri ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:



Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE