q&more
My watch list
my.chemie.de  
Login  

News

Green light for ultra-fine display colors

Sudhir Kumar, Jakub Jagielski / ETH Zürich

ETH chemical engineers have produced the purest green with a light-emitting diode. This is good news for TV displays.

08-Sep-2017: Chih-Jen Shih is very satisfied with his breakthrough: "To date, no one has succeeded in producing green light as pure as we have," says the Professor of Chemical Engineering in his laboratory at ETH Zurich. He points at an ultra-slim, bendable light-emitting diode (LED), which displays the three letters "ETH" in a fine hue of bright green.

Shih's progress is significant, particularly in terms of the next generation of ultra-high resolution displays used for TVs and smartphones. Electronic devices must first be able to produce ultra-pure red, blue and green light in order to enable the next generation of displays to show images that are clearer, sharper, richer in detail and with a more refined range of colours. For the most part, this is already possible for red and blue light; green light, however, has hitherto reached the limits of technology.

This is due mainly to human perception, since the eye is able to distinguish between more intermediary green hues than red or blue ones. "This makes the technical production of ultra-pure green very complex, which creates challenges for us when it comes to developing technology and materials," says Sudhir Kumar, co-lead author of the report.

Up to 99 percent ultra-pure green

It becomes clear from reference to the Rec.2020 standard just how much progress Shih's ultra-green light has made in the development of the next generation of displays. The international standard defines the technical requirements for ultra-high resolution (known as "Ultra HD") displays and provides a framework for further research and development. The requirements also include an improvement in colour quality visible to the naked eye. The standard provides the colour scale that a display can reproduce and therefore a broader range of colour hues.

Ultra-pure green plays a key role in extending the colour range, or gamut. Ultimately, new hues are created through the technical mixture of three base colours: red, blue and green. The purer the base colours, the broader the range of hues a screen can display. Shih's new LED is in line with 97 to 99 percent of the Rec. 2020 standard. By comparison, the purest colour TV displays currently available on the market cover on average only 73.11 to 77.72 percent; none exceeds 80 percent.

Inexpensive, producible LED technology

Wendelin Stark, ETH Professor of Functional Materials Engineering, along with researchers from South Korea and Taiwan, also contributed to the project results. Shih not only made a breakthrough in terms of the results, but also in the material and method. He and his colleagues have effectively developed an ultra-thin, bendable light-emitting diode able to emit pure green light using simple room-temperature processes.

Shih says that this is the second aspect of his breakthrough and is at least equally important, as until now high-temperature processes were required to produce pure light with LED technology. "Because we were able to realise the entire process at room temperature, we've opened up opportunities for the simple, low-cost industrial production of ultra-green light-emitting diodes in the future," says Jakub Jagielski, co-lead author of the report.

More specifically, Shih and his team used nanomaterials to further develop the LED technology. A light-emitting diode usually contains a semiconductor crystal that converts electrical current passed through it into radiant light. The raw material is usually indium gallium nitride (InGaN); however, this material does not have the ideal properties for production of ultra-pure green light.

So Shih's team instead used perovskite, a material that is also used in the manufacture of solar cells and which can convert electricity into light relatively efficiently. It is also inexpensive and helps make the manufacturing process simple and fast - it takes just half an hour to chemically clean perovskite and make it ready for use, says Shih.

The perovskite material in Shih's light-emitting diode is a miniscule 4.8 nanometres in thickness. This is an important factor, since the colour quality depends on the thickness and form of the nanocrystal used. In order to reach the desired pure green, the crystals should not be any thicker or thinner. These flexible, ultra-thin light-emitting diodes are as bendable as a sheet of paper. Hence, they can be produced inexpensively and quickly using the existing roll-to-roll process for example. Shih says this will also benefit industrial production in the future.

Next step: improve efficiency

However, it will still take some time before we see the first industrial application of ultra-green light-emitting diodes. The next step for Shih is to first improve the efficiency. Today, his LED works at 3 percent efficiency when converting electricity into light; in comparison, TV screens currently available on the market have efficiency values of 5 to 10 percent.

Shih is hoping that the next version will be 6 to 7 percent more efficient. He also sees potential for improvement in the lifespan of his light-emitting diode. Currently, it illuminates for about two hours, whereas screens available on the market should work for many years.

Original publication:
Sudhir Kumar, Jakub Jagielski, Nikolaos Kallikounis, Young-Hoon Kim, Christoph Wolf, Florian Jenny, Tian Tian, Corinne J. Hofer, Yu-Cheng Chiu, Wendelin J. Stark, Tae-Woo Lee, and Chih-Jen Shih; "Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates"; Nano Letters; 2017

Facts, background information, dossiers

  • displays
  • light emitting diodes
  • smartphones
  • functional materials
  • ETH Zürich
  • perovskites

More about ETH Zürich

  • News

    Sticking sugar to protein

    Whenever cells receive signals, interact with other cells or identify viruses and bacteria, the process involves not only proteins but also sugar chains attached to their surface. The subject of relatively little attention until now, these structures differ widely in composition and branchi ... more

    Brain signals for drug screening

    An international team led by ETH researchers has developed a technique that uses electrical brain signals to more precisely evaluate the effect of drugs on the brain. It could be of particular use in the early development phase of anti-epilepsy medication. There are still comparatively few ... more

    Quantum cocktail provides insights on memory control

    The speed of writing and reading out magnetic information from storage devices is limited by the time that it takes to manipulate the data carrier. To speed up these processes, researchers have recently started to explore the use of ultrashort laser pulses that can switch magnetic domains i ... more

  • q&more articles

    Investment for the Future

    This is a very particular concern and at the same time the demand placed annually on Dr. Irmgard Werner, who, as a lecturer at the ETH Zurich, supports around 65 pharmacy students in the 5th semester practical training in “pharmaceutical analysis”. With joy and enthusiasm for her subject sh ... more

    Analysis in picolitre volumes

    Reducing time, costs and human resources: many basic as well as applied analytical and diagnostic challenges can be performed on lab-on-a-chip systems. They enable sample quantities to be reduced, work steps to be automated and completed in parallel, and are ideal for combination with highl ... more

  • Authors

    Prof. Dr. Petra S. Dittrich

    Petra Dittrich is an Associate Professor in the Department of Biosystems Science and Engineering at ETH Zurich (Switzerland). She studied chemistry at Bielefeld University and the University of Salamanca (Spain). After completing her doctoral studies at the Max Planck Institute for Biophysi ... more

    Dr. Felix Kurth

    Felix Kurth studied bioengineering at the Technical University Dortmund (Germany) and at the Royal Institute of Technology in Stockholm (Sweden). During his PhD studies at ETH Zurich (Switzerland), which he completed in 2015, he developed lab-on-a-chip systems and methods for quantifying me ... more

    Lucas Armbrecht

    Lucas Armbrecht studied microsystems technology at the University of Freiburg (Breisgau, Germany). During his master’s, he focused on sensors & actuators and lab-on-a-chip systems. Since June 2015, he is PhD student in the Bioanalytics Group at ETH Zurich (Switzerland). In his doctoral stud ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:



Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE