q&more
My watch list
my.chemie.de  
Login  

News

Liquid shock absorbers

© Lucio Isa/ ETH Zurich

10-Nov-2017: Remarkable liquid materials called colloids stiffen under impact. Researchers funded by the SNSF have studied the effect of powerful impacts such as those produced by firearms or micrometeorites.

At first glance, colloids resemble homogeneous liquids such as milk or blood plasma. But in fact they consist of particles in suspension. Some colloids have remarkable properties: they may stiffen following an impact and absorb surface shocks. This property is of interest for many applications, from bulletproof vests to protective shields for satellites. Researchers funded by the Swiss National Science Foundation (SNSF) found that how these colloids work can change dramatically in response to very strong impacts. The scientists have also developed a model that makes these properties easier to understand.

SNSF professor Lucio Isa and his team at ETH Zurich create so-called two-dimensional colloidal crystals. The crystals consist of silica beads several thousandths of a millimetre in diameter in a mixture of water and glycerine. In collaboration with Chiara Daraio of Caltech (USA) and Stéphane Job at the Institut supérieur de mécanique de Paris, the researchers studied how this type of material absorbs shocks.

The team observed that when the colloidal particles are micrometre-sized, the force and speed of impact change how the shocks are absorbed. Below a certain threshold, the viscosity of the liquid is the determining factor, and classical models describe the phenomenon very well. "You have to imagine these tiny glass beads in their liquid," says Isa. "During an impact, the beads move and disperse the fluid around them, more or less rapidly depending on its viscosity. The movement of the fluid is what causes the whole thing to stiffen."

When the shock is particularly intense, the liquid no longer flows between the beads, and they deform. "In this situation, the physical properties of the beads strongly influence shock absorption, and the usual equations no longer apply," says Isa.

Impact of a bullet

For the particles to have an effect, the impact must be extremely intense, such as that caused by a firearm or micrometeorites (objects the size of grains of sand capable of hitting satellites at the speed of ten kilometres per second).

"It was not easy to generate impacts of this intensity in the laboratory," explains Isa. To do so, the researchers covered a small percentage of the silica beads with gold. When exposed to pulsed laser light, the gold evaporated, producing a powerful shock wave in the colloid comparable to that caused, say, by the impact of a micrometeorite.
Ultra-high-speed cameras recorded the action through the lens of a microscope.

"Colloids displaying such properties are really interesting materials to study," says Isa. "For instance, they may even be used for the future development of shields protecting satellites against micrometeorite impacts."

This research was conducted at ETH Zurich, Supméca – Institut supérieur de mécanique de Paris and Caltech. The research was funded by the SNSF and by the Metaudible project under the aegis of the French National Research Agency (ANR) and the Fondation de Recherche pour l'Aéronautique et l'Espace (FRAE).

Original publication:
Ivo Buttinoni, Jinwoong Cha, Wei-Hsun Lin, Stéphane Job, Chiara Daraio, and Lucio Isa; "Direct observation of impact propagation and absorption in dense colloidal monolayers"; PNAS; 2017

Facts, background information, dossiers

  • Caltech
  • ETH Zürich
  • colloidal suspensions
  • silica

More about ETH Zürich

  • News

    Cold leads to slimmer offspring

    Exposure to cold prior to conception causes the resulting offspring to have more brown adipose tissue, which protects against excess weight and metabolic disorders. Scientists studying mice have discovered that this information is passed on by the sperm, and there is a similar correlation i ... more

    Researchers engineer human bone marrow tissue

    Every day in the bone marrow several billion blood cells are formed. This constant supply is ensured by blood stem cells located in special niches within the marrow. These stem cells can multiply and mature into red and white blood cells, which then leave the bone marrow and enter the blood ... more

    Designer cells: artificial enzyme can activate a gene switch

    Complex reaction cascades can be triggered in artificial molecular systems: Swiss scientists have constructed an enzyme than can penetrate a mammalian cell and accelerate the release of a hormone. This then activates a gene switch that triggers the creation of a fluorescent protein. The fin ... more

  • q&more articles

    Analysis in picoliter volumes

    Reducing time, costs and human resources: many basic as well as applied analytical and diagnostic challenges can be performed on lab-on-a-chip systems. They enable sample quantities to be reduced, work steps to be automated and completed in parallel, and are ideal for combination with highl ... more

    Investment for the Future

    This is a very particular concern and at the same time the demand placed annually on Dr. Irmgard Werner, who, as a lecturer at the ETH Zurich, supports around 65 pharmacy students in the 5th semester practical training in “pharmaceutical analysis”. With joy and enthusiasm for her subject sh ... more

  • Authors

    Prof. Dr. Petra S. Dittrich

    Petra Dittrich is an Associate Professor in the Department of Biosystems Science and Engineering at ETH Zurich (Switzerland). She studied chemistry at Bielefeld University and the University of Salamanca (Spain). After completing her doctoral studies at the Max Planck Institute for Biophysi ... more

    Dr. Felix Kurth

    Felix Kurth studied bioengineering at the Technical University Dortmund (Germany) and at the Royal Institute of Technology in Stockholm (Sweden). During his PhD studies at ETH Zurich (Switzerland), which he completed in 2015, he developed lab-on-a-chip systems and methods for quantifying me ... more

    Lucas Armbrecht

    Lucas Armbrecht studied microsystems technology at the University of Freiburg (Breisgau, Germany). During his master’s, he focused on sensors & actuators and lab-on-a-chip systems. Since June 2015, he is PhD student in the Bioanalytics Group at ETH Zurich (Switzerland). In his doctoral stud ... more

More about Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung

  • News

    Using a microscopic ring to produce pulsed light

    Researchers funded by the Swiss National Science Foundation have made a chip-based device that can generate a laser signal with frequencies spaced in a comb-like fashion. Their work could be used in telecommunications applications and in chemical analysis In general, light and water waves a ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:



Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE