My watch list

39 Current news of ETH Zürich


You can refine your search further. Select from the filter options on the left to narrow down your results.

image description
A protein that self-replicates


Long regarded as a biological aberration, amyloids are fibrous aggregates of short protein fragments. Amyloids have a bad reputation because they are thought to be the cause of multiple neurodegenerative diseases, including Alzheimer's, Parkinson's and Creutzfeldt-Jakob disease. It was only ...


image description
Sticking sugar to protein

Researchers clarified the 3D structure of an important enzyme that links sugar to proteins – a breakthrough


Whenever cells receive signals, interact with other cells or identify viruses and bacteria, the process involves not only proteins but also sugar chains attached to their surface. The subject of relatively little attention until now, these structures differ widely in composition and branching, ...


image description
Brain signals for drug screening


An international team led by ETH researchers has developed a technique that uses electrical brain signals to more precisely evaluate the effect of drugs on the brain. It could be of particular use in the early development phase of anti-epilepsy medication. There are still comparatively few ...


image description
Quantum cocktail provides insights on memory control


The speed of writing and reading out magnetic information from storage devices is limited by the time that it takes to manipulate the data carrier. To speed up these processes, researchers have recently started to explore the use of ultrashort laser pulses that can switch magnetic domains in ...


image description
Extremely bright and fast light emission


An international team of researchers from ETH Zurich, IBM Research Zurich, Empa and four American research institutions have found the explanation for why a class of nanocrystals that has been intensively studied in recent years shines in such incredibly bright colours. The nanocrystals contain ...


image description
3D-printed minifactories


ETH researchers have developed a biocompatible ink for 3D printing using living bacteria. This makes it possible to produce biological materials capable of breaking down toxic substances or producing high-purity cellulose for biomedical applications. There will soon be nothing that cannot be ...


image description
Liquid shock absorbers


Remarkable liquid materials called colloids stiffen under impact. Researchers funded by the SNSF have studied the effect of powerful impacts such as those produced by firearms or micrometeorites. At first glance, colloids resemble homogeneous liquids such as milk or blood plasma. But in fact ...


image description
How much does life weigh?

New cell scale with high resolution


ETH researchers have developed a scale for measuring cells. It allows the weight of individual living cells, and any changes in this weight, to be determined quickly and accurately for the first time. The invention has also aroused significant interest both in and outside the field of ...


image description
Holograms for molecules


Much can be detected in blood or urine: viral illnesses, metabolic disorders or autoimmune diseases can be diagnosed with laboratory tests, for instance. But such examinations often take a few hours and are quite complex, which is why doctors hand the samples over to specialist ...


image description
Green light for ultra-fine display colors


Chih-Jen Shih is very satisfied with his breakthrough: "To date, no one has succeeded in producing green light as pure as we have," says the Professor of Chemical Engineering in his laboratory at ETH Zurich. He points at an ultra-slim, bendable light-emitting diode (LED), which displays the three ...


Page 1 From 4
Subscribe to e-mail updates relating to your search

You will receive via e-mail the latest search results matching your search criteria. This service is free of charge and can be cancelled at any time.

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE