q&more
My watch list
my.chemie.de  
Login  

Author

Dr. Stefan Schiller

Albert-Ludwigs-Universität Freiburg

Stefan M. Schiller studied chemistry at Gießen (Mainz, Germany) and the University of Massachusetts, majoring in macromolecular chemistry and biochemistry. For his doctorate in biomimetic membrane systems he worked till 2003 at the Max Planck Institute for Polymer Research in Mainz. Research positions in Israel and the USA (Stanford & IBM Research Center Almaden, San Jose) then followed. During a postdoc position at the Scripps Research Institute, La Jolla (USA), he completed research in the field of chemical and synthetic biology. He has been a principal investigator at the University of Freiburg since 2008, first as a Junior Fellow at the Freiburg Institute of Advanced Studies (FRIAS) and then (since 2014) with his own lab at the Center for Biological Systems Analysis. In 2014, he received the BMBF „Next Generation of Biotechnological Methods“ research prize for his work on universal modular production organisms. His research focuses on the development of complex, functional molecular systems and architectures for both in vivo and in vitro applications, achieved by combining chemical and biological methods in conjunction with nano-/biotechnology.

Facts, background information, dossiers

Other articles by this author

All articles

Modular biofactories at the cellular level

Despite his love for complex molecular architectures, this „dyed-in-the-wool“ bio-organic chemist has never embraced the conventional segregation of synthetic polymers and bio­logical (…)

More about Uni Freiburg

  • News

    A question of time

    A team led by the Freiburg biologists Prof. Dr. Wolfgang Schamel and Prof. Dr. Wilfried Weber conducted an experiment in which they controlled the duration of the interaction of a specific protein with T cells, a type of white blood cells, thereby showing how the immune system differentiate ... more

    Traffic control of cells

    Cells in the human body can display remarkable differences in their behaviour depending on the mechanical properties of the tissue surrounding them. This is especially true for immune cells, which migrate through the body and are thus constantly exposed to tissues with different properties ... more

    Stem Cells Regulate Their Fate by Altering Their Stiffness

    In adults, mesenchymal stems cells (MSCs) are primarily found in bone marrow and they play a vital role in repair of damaged organs. The transformation of a single MSC into complex tissue like cartilage and bone starts with its association with other MSCs in order to form microscopic cluste ... more

  • q&more articles

    Modular biofactories at the cellular level

    Despite his love for complex molecular architectures, this „dyed-in-the-wool“ bio-organic chemist has never embraced the conventional segregation of synthetic polymers and bio­logical macromolecules. All molecules are composed of atoms, after all. Why make an artificial distinction? Why not ... more

    Bookmarks

    From a pluripotent stem cell a muscle cell or a liver cell can form, which despite their difference in appearance, are genetically identical. From one and the same genotype, therefore, the most diverse phenotypes can be formed – epigenetics is making it possible! It is a very exciting area ... more

  • Authors

    Julia M. Wagner

    Julia M. Wagner studied pharmacy in Freiburg (licensure 2008). Since 2008 she is a PhD student and research assistant in the group of Professor Dr. M. Jung. Her research focuses ­on the cellular effects of histone deacetylase inhibitors. more

    Prof. Dr. Manfred Jung

    Manfred Jung is a graduate of the University of Marburg, where he studied pharmacy (licensure  1990) and obtained his doctorate in pharmaceutical chemistry with Prof. Dr. W. Hanefeld. After a post-doctorate at the University of Ottawa, Canada, he began with independent research in 1994 ­at ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE