q&more
My watch list
my.chemie.de  
Login  

Author

Prof. Dr. Kristina Tschulik

Ruhr-Universität Bochum, Lehrstuhl für Analytische Chemie II (NanoEC)

Prof. Dr. Kristina Tschulik

Kristina Tschulik received her doctorate from TU Dresden in 2012 and worked as a postdoctoral fellow at the Leibniz Institute for Solid State and Materials Research Dresden and at the University of Oxford. Afterwards she established the working group for “Electrochemistry and Nanoscale Materials” at Ruhr University Bochum, where she has held the Chair for Analytical Chemistry II since 2018.

Activities

As Principal Investigator, Professor Tschulik is a member of the Cluster of Excellence Ruhr Explores Solvation RESOLV, the graduate college “Confinement Controlled Chemistry”, the international training network “Single-Entity Nanoelectrochemistry SENTINEL” and the Transregio SFB/TR 247 “Heterogeneous Oxidation Catalysis in the Liquid Phase”.

Awards

Among her most important honors are the “Dissertation Award of the Leibniz Association” (2013), the “International Society of Electrochemistry Award for Analytical Electrochemistry” (2017) and the “Hellmuth Fischer Medal” of the DECHEMA (2018). In addition to that she has received highly prestigious fellowships like a returnee program of North Rhine-Westphalia (2015–2020), a Marie Curie Intra European Fellowship (2012–2015) and a PhD scholarship of the Studienstiftung des deutschen Volkes (2009–2012).

Focus

Tschulik develops new electrochemical and spectroelectrochemical methods for the characterization of nanoparticles in the liquid phase, both with regard to their physical properties, such as size, composition and structure, and their chemical reactivities in electrocatalysis and corrosion. 

A further focus of her research is magnetic field-supported electrochemistry, in which locally superimposed magnetic fields are specifically used to control electrochemical reactions.

Methods

  • Single nanoparticle electrochemistry
  • Magnetic field-supported electrochemistry
  • Dark-field microscopy in combination with electrochemistry

Facts, background information, dossiers

  • darkfield microscopy
  • oxidation catalysis
  • heterogeneous oxida…

Other articles by this author

All articles

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE