q&more
My watch list
my.chemie.de  
Login  

Author

Dr. Christian Schulze Gronover

Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME

© Ansgar Pudenz

Dr. rer. nat. Christian Schulze Gronover

Christian Schulze Gronover, born in 1975, is a molecular biologist who received his doctorate in biology from the University of Münster in 2004. During his doctoral studies, he was a visiting scientist at the Scottish Crop Research Institute in Dundee, Scotland, and at the Graduate School for Experimental Plant Sciences in Utrecht, the Netherlands. After two years as a postdoc working in plant and microbial biotechnology he joined The Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany, in 2006 and has been a group leader there since 2010. His focus is molecular biotechnology and plant breeding research.

Awards

Dr. Christian Schulze Gronover's research was chosen as one of Time Magazine's Top 50 innovations in 2009, awarded the Hanson Medal in 2011, the Josef von Fraunhofer Prize in 2015, the Hugo Junkers Prize in 2020, and nominated for the German Future Prize in 2021.

Facts, background information, dossiers

  • molecular biology
  • biology
  • crop research
  • plant sciences
  • plant biotechnology
  • microbial biotechnology
  • applied ecology
  • molecular biotechnology
  • plant breeding research

Other articles by this author

All articles

More about Fraunhofer IME

  • News

    Spider venom for therapeutics and bioinsecticides

    The venom of a single spider can contain up to 3000 components. These components, mostly peptides, can be used to develop promising drug leads for the treatment of diseases. Spider venom can also be used as a biological pesticide. A team of scientists from the Fraunhofer Institute for Molec ... more

    Fuel and chemicals from steel plant exhaust gases

    Carbon monoxide-rich exhaust gases from steel plants are only being reclaimed to a minor extent as power or heat. Fraunhofer researchers have developed a new recycling process for this materially unused carbon resource: They successfully produced fuel and specialty chemicals from these exha ... more

    Natural rubber from dandelions

    Dandelions are modest plants that are an excellent alternative source for a raw material of high demand: natural rubber, the fundamental ingredient in rubber products. Fraunhofer researchers have established the basis for the large-scale production of high quality rubber with Russian dandel ... more

  • q&more articles

    Dandelions as a new source of natural rubber

    More than 12,500 plants produce latex, a colorless to white milky sap that contains, among other things, natural rubber. However, this industrially indispensable raw material is found in only three plants in a quality required to produce high-performance rubber products such as car tires. more

    Animal Venomics

    More than 200,000 animal species produce poison to defend themselves against predators or to kill their prey. These poisons are usually complex mixtures of different toxins that have been functionally optimized over the course of evolution. For this reason, animal poisons are also a valuabl ... more

  • Authors

    Prof. Dr. Andreas Vilcinskas

    Andreas Vilcinskas, born in 1964, studied biology at TU Kaiserslautern and at Freie Universität Berlin (FU Berlin). He received his doctorate from the Zoology Dept. at FU Berlin in 1994 and completed his qualification as a professor (“habilitation”) there in zoology in 1998. From 1999 to 20 ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE