q&more
My watch list
my.chemie.de  
Login  

Author

Monika C. Wehrli

Technische Universität München, Lehrstuhl für Brau- und Getränketechnologie

Monika C. Wehrli

Monika Wehrli, born in 1994, graduated from the ETH Zurich with a major in food process engineering. Since 2018 she has been working as a researcher at the Technical University of Munich, Germany, at the Chair of Brewing and Beverage Technology, where she pursues her doctorate in the field of cereal technology and process engineering.

Focus

In her doctorate, Monika Wehrli focuses on how the manufacturing and processing conditions of vital gluten affect its material properties.

Methods

  • Rheology
  • Confocal laser scanning microscopy
  • Surface and texture analysis

Facts, background information, dossiers

  • food process engineering
  • cereal technology
  • cereal process engineering

Other articles by this author

All articles

More about TUM

  • News

    First electric nanomotor made from DNA material

    A research team led by the Technical University of Munich (TUM) has succeeded for the first time in producing a molecular electric motor using the DNA origami method. The tiny machine made of genetic material self-assembles and converts electrical energy into kinetic energy. The new nanomot ... more

    Mass spectrometry-based draft of the mouse proteome

    Proteins control and organize almost every aspect of life. The totality of all proteins in a living organism, a tissue or a cell is called the proteome. Using mass spectrometry, researchers at the Technical University of Munich (TUM) characterize the proteome, or protein complement of the g ... more

    Mini-fuel cell generates electricity using the body's sugar

    Glucose is the most important energy source in the human body. Scientists at the Technical University of Munich (TUM) and the Massachusetts Institute of Technology (MIT) now want to use the body's sugar as an energy source for medicinal implants. They have developed a glucose fuel cell whic ... more

  • q&more articles

    Vital wheat gluten, a protein with potential

    For almost every one of the 17 goals that the 2030 Agenda for Sustainable Development sets out, food and its value chain plays an important role [1]. With this agenda, the United Nations has created a global framework for action that addresses all social players. more

    Biobased raw material flows of the future

    Anthropogenic climate change and the rising world population, in combination with increasing urbanization, poses global challenges to our societies that can only be solved by technological advancement. The direct biotechnological use of greenhouse gases, including residual biomass flows fro ... more

    Taste and aroma boost in the mouth

    The food trend towards healthy snacks is continuing. Snacks made from freeze-dried fruit meet consumer expectations of modern and high-quality food. However, freeze drying of whole fruits requires long drying times and substantially reduces sensorial quality, which is unappealing to consumers. more

  • Authors

    Prof. Dr. Thomas Becker

    Thomas Becker, born in 1965, studied Technology and Biotechnology of Food at the Technical University of Munich (TUM). He then worked as a project engineer at the company Geo-Konzept from 1992 to 1993. In 1995, he received his PhD from the TUM. From 1996 to 2004 he was Deputy Head of Depart ... more

    Prof. Dr. Thomas Brück

    Thomas Brück, born in 1972, obtained his B.Sc. in chemistry, biochemistry and management science from Keele University, Stoke on Trent. Additionally, he holds an M.Sc. in molecular medicine from the same institution. In 2002, Thomas obtained his Ph.D. in Protein Biochemistry from Imperial C ... more

    Dr. Norbert Mehlmer

    Norbert Mehlmer, born in 1977, studied biology at the University of Salzburg and wrote his diploma thesis at the Max Planck Institute for Molecular Genetics in Berlin. He earned his doctorate in genetics/microbiology at the Max F. Perutz Laboratories (MFPL) of the University of Vienna. Subs ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE