q&more
My watch list
my.chemie.de  
Login  

Author

Prof. Dr. Stephan Clemens

Universität Bayreuth

Stephan Clemens, Jg. 1963, studied biology in Münster and Brighton, then acquired his doctorate in Münster. Since his postdoc-stay at the University of California San Diego, his scientific interest has been mainly targeted at metal homoeostasis in plants. He uses the models Arabidopsis thaliana, barley and A. halleri, a metal-hyper-accumulating plant, to examine the molecular mechanisms of metal transport and accumulation. As a group manager at the Leibniz-Institut für Pflanzenbiochemie, he qualified as a professor at the University of Halle-Wittenberg in 2003 . Since 2006, he has held the chair for plant physiology of the University of Bayreuth; since 2012, he has been managing the research office for food quality in Kulmbach as well.

Facts, background information, dossiers

  • biology
  • Arabidopsis thaliana

Other articles by this author

All articles

More about Uni Bayreuth

  • News

    New study on optimizing microbial fuel cells shows electrode material can make all the difference

    At present, microbial fuel cells are mainly used in research laboratories to generate electricity. In order for industrial applications to be considered in the future, the fuel cells must be further developed so that they can produce consistently higher amounts of electricity than is curren ... more

    A new peptide system for the targeted transport of molecules into living mammalian cells

    A novel peptide developed at the Universities of Bayreuth and Bristol is eminently suited for the targeted transport of molecules, for example of active substances and dyes, into the cells of mammals. The peptide is characterized by a dual function: It can enter the cell from the outside an ... more

    New spectroscopic insights into hydrogen bonds

    Hydrogen bonds are of fundamental interest in materials science, physics and chemistry. An international team including scientists from the University of Bayreuth has now achieved surprising insights into the formation of hydrogen bonds using a novel method that enables the application of N ... more

  • q&more articles

    Authentic food

    Authentic food is growing in popularity with consumers. In a heavily industrialized market, a regional, single-source and/or specially manufactured product is increasingly becoming a guarantor of greater value. In the premium segment in particular, economically motivated “food fraud” can re ... more

    More than honey?

    For thousands of years, the word “honey” has been synonymous with an all-natural, healthy food. Unsurprisingly, honey has also enjoyed unwavering popularity with consumers – and especially in times when organic food and a healthy lifestyle are more in vogue than ever before. more

    What Are We Eating?

    What ends up on our plates? We used to think we knew – until we were disabused of this notion in early 2013. Instead of beef, there had been large-scale use of processed horsemeat, especially in frozen products and mincemeat. Although this posed no hazard to health, the damage was enormous, ... more

  • Authors

    Dr. Christopher Igel

    completed his undergraduate studies in biochemistry at the University of Bayreuth from 2009 to 2013. He completed his bachelor’s dissertation entitled “Honey Analysis Using NMR” at the BIOmac research centre under the tutelage of Prof. Dr. Schwarzinger. more

    Wolfrat Bachert

    commenced his undergraduate studies in mechanical engineering at TU Dresden before moving to the University of Bayreuth in 2009 to study biology. In 2013, he completed his bachelor dissertation in the Dept. of Biochemistry under the tutelage of Prof. Dr. Wulf Blankenfeldt on the subject of ... more

    Felix Brauer

    completed his graduate studies in biochemistry and a master’s in biochemistry and molecular biochemistry at the University of Bayreuth. He has worked as a research assistant at ALNuMed GmbH and doctorand at RC BIOmac since 2013. His research interests include NMR-based food analytics and th ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE