10-Jan-2018 - Universität Zürich

Cluster of Resistant Tuberculosis Pathogen Discovered

Between February and November 2016, the Institute of Medical Microbiology at the University of Zurich discovered a multidrug-resistant Mycobacterium tuberculosis in eight refugees arriving in Europe from the Horn of Africa. The analyses provided an impulse for launching a transnational investigation and developing a pan-European alerting system.

Resistant tuberculosis pathogens are a regular part of the day-to-day business at the Swiss National Center for Mycobacteria (NZM) at the University of Zurich. And yet, the Mycobacterium tuberculosis found in a Somali asylum seeker in the refugee center in Chiasso in February 2016 was extraordinary: “These bacteria exhibited a new combination of resistance mutations against four different antibiotics that had never before been described,” says Peter Keller, Head of Diagnostics at NZM, who identified the germ. The multidrug resistance makes it necessary for people carrying these bacteria to be isolated and undergo intravenous drug treatment at a hospital for several months. 

In the months following the discovery, the same resistant germ was also observed in further patients, all of whom had migrated to Europe from countries on the Horn of Africa. In total, the NZM identified the pathogen in eight refugees from Somalia, Eritrea, and Djibouti between February and November 2016. Thanks to the rapid detection and the isolation measures, no further people were infected in Switzerland.

Alert issued and preventive measures

This unusual build-up prompted the management of NZM and of the Federal Office of Public Health (FOPH) to alert their colleagues across Europe. At the same time, the German reference laboratory in Borstel near Hamburg also registered a case with the same pathogen. The NZM then made their molecular-biological data available to the European Center for Disease Prevention and Control (ECDC) to enable their team to identify further possible cases in the EU. In the course of these analyses, the European tuberculosis reference laboratories identified a total of 21 cases in a cross-border collaboration. As with the cases in Switzerland, these patients had also come from the Horn of Africa or Sudan.

Thanks to the alert, the pathogen was prevented from spreading further, and the authorities also took preventive measures: “The extraordinary case led to the development of a European alerting organization for dangerous tuberculosis pathogens,” says Peter Keller, who initiated the European analyses. He is the corresponding author of the wide-reaching study, in which multiple European centers are involved and which was published in the prestigious journal Lancet Infectious Diseases.

Chain of infection reconstructed

Molecular-genetic analyses and interviews with patients made it possible for the researchers to partially reconstruct the chain of infection. The data indicates that the tuberculosis pathogen spread among migrants in a refugee camp near Bani Walid in Libya. The overcrowded camp, some 180 kilometers southeast of Tripoli, is notorious for its poor hygiene and inhumane conditions. Several of the patients diagnosed with this particular resistant Mycobacterium tuberculosis had come through this camp on their way to Europe.

Rapid test developed

It is no longer possible to identify with any degree of certainty the first carrier or who introduced the bacteria to the camp. Scientists believe that the pathogen originated in northern Somalia, where it is likely to have developed the dangerous new combination of resistances as a result of mutations. Genetic analyses have allowed researchers to develop a rapid PCR test. The test can be used in suspected cases of this Mycobacterium tuberculosis and the results are obtained in a matter of hour

Facts, background information, dossiers

  • Mycobacterium tuberculosis
  • tuberculosis
  • multidrug resistance
  • rapid tests

More about Universität Zürich

  • News

    Mechanism for DNA Invasion of Adenoviral Covid-19 Vaccines Discovered

    Adenoviruses have a linchpin protein that stabilizes their DNA until it reaches the infected cell’s nucleus. The protein then detaches from the viral genome, and the virus uncoats. Only then are the genes released into the nucleus, which is necessary for the production of new viruses. This ... more

    Microscopy Deep Learning Predicts Viral Infections

    When viruses infect cells, changes in the cell nucleus occur, and these can be observed through fluorescence microscopy. Using fluoresence images from live cells, researchers at the University of Zurich have trained an artificial neural network to reliably recognize cells that are infected ... more

    Lipid Metabolism Controls Brain Development

    A lipid metabolism enzyme controls brain stem cell activity and lifelong brain development. If the enzyme does not work correctly, it causes learning and memory deficits in humans and mice, as researchers at the University of Zurich have discovered. Regulating stem cell activity via lipid m ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: