04-May-2018 - New York University

Chemists develop MRI-like technique to detect what ails batteries

A team of chemists has developed an MRI-based technique that can quickly diagnose what ails certain types of batteries--from determining how much charge remains to detecting internal defects--without opening them up.

"The use of alternative energy and electrically powered vehicles will further increase the demand for better and safer batteries," observes Alexej Jerschow, a professor in New York University's Department of Chemistry, who led the research team. "However, there are currently only a very limited set of tools available to diagnose a battery's health without destroying the battery--our non-invasive technique offers a faster and more expansive method for making these assessments."

The work also included Andrew Ilott, an NYU post-doctoral fellow at the time of the study and now a research investigator at Brisol-Myers Squibb; Mohaddese Mohammadi, an NYU doctoral candidate; and Christopher Schauerman and Matthew Ganter, research scientists at the Rochester Institute of Technology.

"Ensuring cell quality and safety is paramount to the manufacturing process that can save companies significant cost and prevent catastrophic cell failures from occurring," says Ganter, co-director of the RIT Battery Prototyping Center.

"This work not only supports the battery industry as a whole, but also the growing energy storage ecosystem in New York," adds Christopher Schauerman, co-director of the RIT Battery Prototyping Center.

The research focuses on rechargeable Lithium-ion (Li-ion) batteries, which are used in cell phones, laptops, and other electronics.

Notably, rechargeable batteries are at the heart of new technologies, including electric cars or storage for renewable energy sources.

However, recent malfunctions in hand-held devices and electric vehicles have highlighted the difficulties in designing batteries for these cutting-edge technologies. In addition, engineers often cannot determine the nature of defects or even impending battery failures without taking apart the device, which typically results in its destruction.

In general, magnetic resonance (MR) methods provide the ability to measure tiny changes in magnetic field maps and, as a result, create a picture of what lies inside a structure--for example, MRI (magnetic resonance imaging) can produce images of the human body's organs in a non-invasive manner.

In their Nature Communications work, the scientists adopted a procedure similar to MRI. Here, they measured tiny magnetic field changes surrounding the battery's electrochemical cells.

In their experiments, they examined Li-ion batteries in different states--various levels of charge (i.e., battery life) and conditions (i.e., some damaged and others not). Such cells were prepared by collaborators at RIT's Battery Prototyping Center. With these cells, the NYU team was able to match magnetic field changes surrounding the batteries to different internal conditions, revealing state of charge and certain defects. These included bent and missing electrodes as well as small foreign objects in the cell, which are flaws that can occur during the normal manufacturing process.

"With future enhancements to this method, it could provide a powerful means of predicting battery failures and battery lifetimes as well as facilitate the development of next-generation high-performance, high-capacity, and long-lasting or fast-charging batteries," adds Jerschow.

  • Andrew J. Ilott, Mohaddese Mohammadi, Christopher M. Schauerman, Matthew J. Ganter & Alexej Jerschow; "Rechargeable lithium-ion cell state of charge and defect detection by in-situ inside-out magnetic resonance imaging"; Nature Communications; Volume 9, Article number: 1776 (2018)

Facts, background information, dossiers

More about New York University

  • News

    Tracking codes to authenticate genuine 3-D printed parts

    The worldwide market for 3D-printed parts is a $5 billion business with a global supply chain involving the internet, email, and the cloud - creating a number of opportunities for counterfeiting and intellectual property theft. Flawed parts printed from stolen design files could produce dir ... more

    Study pinpoints role of proteins that produce pearls

    Pearls are among nature's most beautiful creations, and have been treasured for countless centuries. Beneath one's iridescent surface lies a tough and resilient structure made of intricately arranged tiles of calcium carbonate organized by a crew of proteins that guide its formation and rep ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: