q&more
My watch list
my.chemie.de  
Login  

News

Flexible organic electronics mimic biological mechanosensory nerves

Yeongin Kim (Stanford University), Alex Chortos(Stanford University), Wentao Xu (Seoul National University), Zhenan Bao (Stanford University), Tae-Woo Lee (Seoul National University)

(A) A biological mechanosensory nerve. Mechanoreceptors receive pressures and change receptor potentials. The nerve fiber of a sensory neuron generates action potentials depending on the receptor potential changes. The action potentials are delivered through biological synapses to next neurons at a spinal cord. (B) An artificial mechanosensory nerve. Pressure sensors, organic ring oscillators, and synaptic transistors mimic biological mechanoreceptors, biological neurons, and biological synapses, respectively. The same colors represent corresponding parts. (C) A photograph of an artificial mechanosensory nerve.

Yeongin Kim (Stanford University), Alex Chortos(Stanford University), Wentao Xu (Seoul National University), Zhenan Bao (Stanford University), Tae-Woo Lee (Seoul National University)

Figure2. Braille reading using an artificial mechanosensory nerve (J) An artificial mechanosensory nerve with a pressure sensor array of 2 × 3 pixels. Ring oscillators and synaptic transistors were connected to the pressure sensors and process the pressure information. (K) The outputs of the artificial mechanosensory nerve in (J) when a braille character "E" was pressed. (L) The performance of artificial mechanosensory nerves with and without synaptic transistors. The synaptic transistors help our system to distinguish braille characters clearly. Figure3. Movement controls using the connection between an artificial sensory (afferent) nerve and biological motor (efferent) nerves (A) An insect and an artificial mechanosensory nerve used in this experiment. (B) An artificial mechanosensory nerve was connected to biological motor nerves to make a hybrid reflex arc and control the movements of a detached insect leg. (C) The experiment set-up used to measure the force of the movements of the disabled insect leg.

04-Jun-2018: Researchers at Seoul National University and Stanford University developed artificial mechanosensory nerves using flexible organic devices to emulate biological sensory afferent nerves. They used the artificial mechanosensory nerves to control a disabled insect leg and distinguish braille characters.

Compared to conventional digital computers, biological nervous system is powerful for real-world problems, such as visual image processing, voice recognition, tactile sensing, and movement control. This inspired scientists and engineers to work on neuromorphic computing, bioinspired sensors, robot control, and prosthetics. The previous approaches involved implementations at the software level on conventional digital computers and circuit designs using classical silicon devices which have shown critical issues related to power consumption, cost, and multifunction.

The research describes artificial mechanosensory nerves based on flexible organic devices to emulate biological mechanosensory nerves. "The recently found mechanisms of information processing in biological mechanosensory nerves were adopted in our artificial system," said Zhenan Bao at Stanford University.

The artificial mechanosensory nerves are composed of three essential components: mechanoreceptors (resistive pressure sensors), neurons (organic ring oscillators), and synapses (organic electrochemical transistors). The pressure information from artificial mechanoreceptors can be converted to action potentials through artificial neurons. Multiple action potentials can be integrated into an artificial synapse to actuate biological muscles and recognize braille characters.

Devices that mimic the signal processing and functionality of biological systems can simplify the design of bioinspired system or reduce power consumption. The researchers said organic devices are advantageous because their functional properties can be tuned, they can be printed on a large area at a low cost, and they are flexible like soft biological systems.

Wentao Xu, a researcher at Seoul National University, and Yeongin Kim and Alex Chortos, graduate students at Stanford University, used their artificial mechanosensory nerves to detect large-scale textures and object movements and distinguish braille characters. They also connected the artificial mechanosensory nerves to motor nerves in a detached insect leg and control muscles.

Professor Tae-Woo Lee, a Professor at Seoul National University said, "Our artificial mechanosensory nerves can be used for bioinspired robots and prosthetics compatible with and comfortable for humans." Lee said, "The development of human-like robots and prosthetics that help people with neurological disabilities can benefit from our work."

Original publication:
Kim, Yeongin and Chortos, Alex and Xu, Wentao and Liu, Yuxin and Oh, Jin Young and Son, Donghee and Kang, Jiheong and Foudeh, Amir M. and Zhu, Chenxin and Lee, Yeongjun and Niu, Simiao and Liu, Jia and Pfattner, Raphael and Bao, Zhenan and Lee, Tae-Woo; "A bioinspired flexible organic artificial afferent nerve"; Science; 2018

Facts, background information, dossiers

  • transistors
  • synapses
  • signal processing

More about Seoul National University

  • News

    Peptide induces chirality evolution in a single gold nanoparticle

    For the first time, scientists have successfully created optically active, chiral gold nanoparticles using amino acids and peptides. Many chemicals significant to life have mirror-image twins (left-handed and right-handed structures), a characteristic that is conventionally called chirality ... more

    Mummified Remains Show Patterns of Parasitic Infections

    Studying parasites has many modern-day advantages for understanding diseases, but it can also help researchers to understand ancient cultures. By examining mummified remains from all over the world, researchers can understand how societies functioned then, and even understand daily habits a ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE