11-Jul-2018 - University of Tokyo

Why gold-palladium alloys are better than palladium for hydrogen storage

Materials that absorb hydrogen are used for hydrogen storage and purification, thus serving as clean energy carriers. The best-known hydrogen absorber, palladium (Pd), can be improved by alloying with gold (Au).

New research led by The University of Tokyo Institute of Industrial Science explains for the first time how Au makes such a difference, which will be valuable for fine-tuning further improvements.

The first step in hydrogen storage is chemisorption, wherein gaseous H2 collides with Pd and adsorbs (sticks) to the surface. Secondly, the chemisorbed H atoms diffuse into the sub-surface, several nanometers deep. A recent article in PNAS reports that the group focused on this slow second step, which is the bottleneck to the overall process.

In pure Pd, only around 1 in 1,000 of the H2 molecules that collide with the metal actually absorb into the interior. Hence, only these can be stored as energy carriers. However, when the Pd surface is alloyed with Au, absorption is over 40 times faster.

It is vital to get the amount of Au just right - hydrogen absorption is maximized when the number of Au atoms is slightly less than half (0.4) of a single monolayer of Pd, according to the study. This was discovered by thermal desorption spectroscopy, and by depth-measurement of the H atoms using gamma-ray emissions.

"We wanted to know what role Au plays," study first author Kazuhiro Namba says. "The Au atoms are mostly at the alloy surface. However, our results showed that hydrogen storage is improved even below this depth, in pure Pd. Therefore, Au must be accelerating the diffusion of hydrogen into the sub-surface, rather than improving its solubility."

This diffusion acts like a typical chemical reaction - its rate is determined by the energy barrier, i.e. the hurdle that the H atoms must overcome to penetrate Pd. The barrier height is the gap between the energies of the chemisorbed H atoms and the transition state they must pass through to reach the first sub-surface site.

According to density functional theory (DFT) calculations, the Au atoms destabilize chemisorbed hydrogen, thus increasing their energy and reducing the barrier. By making the surface a less stable environment for H atoms, this encourages them to penetrate more quickly into deeper sites, instead of lingering at the surface. Photoemission spectroscopy suggests that Au atoms push the energy of the Pd electrons downward, weakening their ability to chemisorb hydrogen.

However, the weakly chemisorbed H atoms are also more likely to simply desorb from the surface; i.e., return to the gas phase. This unwanted process explains why hydrogen storage is maximized with just 0.4 monolayers of Au - if any more Au is added, the desorption of hydrogen outpaces its diffusion into Pd.

"Our study reveals, at the electronic level, how Au alloying controls hydrogen absorption," co-author Shohei Ogura says. "This will help us to design better hydrogen storage materials, which will play a role in carbon-neutral energy transport, as well as solid catalysts for chemical reactions, which often depend on surface-bound hydrogen."

Facts, background information, dossiers

  • photoemission spectroscopy

More about University of Tokyo

  • News

    Cage with Caps: Selective confinement of rare-earth-metal hydrates in host molecules

    Rare-earth metals are indispensable for many technical products, from smartphones, laptops, batteries, electromotors, and wind turbines, to catalysts. In the journal Angewandte Chemie, a Japanese team has now introduced a molecular “cage” with “caps” that can be used to selectively “confine ... more

    Electrons Passed Around

    Photoinduced charge transfers are an interesting electronic property of Prussian blue and some analogously structured compounds. A team of researchers has now been able to elucidate the ultrafast processes in the light-induced charge transfer between iron and manganese in a manganese-contai ... more

    Sustainable chemical synthesis with platinum

    Researchers used platinum and aluminum compounds to create a catalyst which enables certain chemical reactions to occur more efficiently than ever before. The catalyst could significantly reduce energy usage in various industrial and pharmaceutical processes. It also allows for a wider rang ... more

Most read news

  1. Mettler Toledo opens new Competence Center in the Middle-East
  2. Flexible organic electronics mimic biological mechanosensory nerves
  3. New catalyst produces cheap hydrogen
  4. Combination Therapy against Cancer
  5. Revealing the molecular mechanisms of the circadian clock
  6. Alternative process for converting white phosphorus promises more sustainability in the chemical industry
  7. Batteries without critical raw materials
  8. Bioinformatics platform for the genome-based taxonomical classification of bacteria and archaea
  9. Metallic nanoparticles light up another path towards eco-friendly catalysts
  10. The 7th BioProScale Symposium took place again as in-person event in Berlin

Topics A-Z

All topics

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: