q&more
My watch list
my.chemie.de  
Login  

News

Light-controlled molecules: Scientists develop new recycling strategy

Discovery lays the foundation for recycling of yet non-recyclable plastics

Michael Kathan

A programmable molecule in combination with a specific light sequence allows for bond formation (UV and red light; 1. to 4.) or scission (UV and blue light; 4. to 1.) with molecular building-blocks.

15-Aug-2018: Robust plastics are composed of molecular building-blocks, held together by tough chemical linkages. Their cleavage is extremely difficult to achieve, rendering the recycling of these materials almost impossible. A research team from the Humboldt-Universität zu Berlin (HU) developed a molecule, which can drive or reverse specific chemical reactions with light of different colors. This enables making and breaking of connections on the molecular scale, even if they are exceptionally strong. The discovery paves the way for the development of novel recycling methods and sustainable materials. Light-driven recovery of individual molecular building-blocks has great potential to enable recycling of yet non-recyclable plastics without compromising on color, quality, or shape.

“The working principle of our system is quite similar to the one of ready-to-assemble furniture” explain Michael Kathan and Fabian Eisenreich, the two first authors of this study. “We are able to repetitively assemble or disassemble molecular architectures, but instead of a hammer and screw-driver, we use red and blue LEDs as tools to control our molecules.”

Original publication:
Michael Kathan, Fabian Eisenreich, Christoph Jurissek, Andre Dallmann, Johannes Gurke und Stefan Hecht; “Light-driven molecular trap enables bidirectional manipulation of dynamic covalent systems”; Nature Chemistry; 2018

Facts, background information, dossiers

  • chemical reactions

More about Humboldt Universität Berlin

  • News

    Photocatalyst system for plastics production

    A research team from Berlin has developed a novel catalyst system, which enables the regulation of multiple polymerization processes to produce biodegradable plastics solely by illumination with light of different colors.  The properties of a polymeric material are highly dependent on facto ... more

  • q&more articles

    Light-regulated production of biodegradable plastics

    Light is a powerful tool to manipulate a vast variety of chemical processes. The use of specific photo-chromic molecules allows chemists to perform reactions in a reversible fashion with a high spatio-temporal resolution. more

    Alzheimer's: searching for a way out

    Although the discovery of Alzheimer's disease now lies over a century in the past, the crucial events that influence the course of the disorder remain largely unknown. For some time now, researchers have been turning their attention to the tau protein, long known to be a component of deposi ... more

  • Authors

    Michael Kathan

    Michael Kathan, born in 1988, studied chemistry at the Freie Universität Berlin and ETH Zurich, where he focused on fluorine chemistry and strained aromatic systems. After completing his master degree at the Freie Universität Berlin, he began his PhD thesis in 2015 in the research group of ... more

    Fabian Eisenreich

    Fabian Eisenreich, born in 1988, studied chemistry at the Humboldt-Universität zu Berlin, where he completed his bachelor and master thesis in the group of Professor Stefan Hecht while being supported during his studies by the Deutschlandstipendium. In the same research group in December 20 ... more

    Prof. Dr. Stefan Hecht

    Stefan Hecht, born in 1974, studied chemistry at the Humboldt-Universität zu Berlin and the University of California, Berkeley, where he completed his PhD in 2001 on macromolecular organic chemistry under the guidance of Professor Jean M. J. Fréchet. After positions as a junior research gro ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE