21-Aug-2018 - University of Washington

Progress toward Personalized Medicine

Microfluidic chip for analysis of single cells

A few little cells that are different from the rest can have a big effect. For example, individual cancer cells may be resistant to a specific chemotherapy—causing a relapse in a patient who would otherwise be cured. In the journal Angewandte Chemie, scientists have now introduced a microfluidics-based chip for the manipulation and subsequent nucleic-acid analysis of individual cells. The technique uses local electric fields to highly efficiently “trap” the cells (dielectrophoresis).

Molecular analyses of individual cells are necessary to better understand the role of heterogenous cell populations in the development of diseases and to develop effective therapies for personalized medicine. Identifying individual cells in a mass of other cells is an enormous challenge in diagnostic medicine. The cells must be sorted, held, transferred into another container with an extremely small volume (< 1 µL) and then must undergo molecular analysis. Conventional methods are usually very time consuming and complex, as well as unreliable and inefficient. They can also compromise the viability of the cells, require large sample volumes, have a high risk of contamination, and/or require expensive instruments.

Scientists from the University of Washington (Seattle, USA), Iowa State University (Ames, USA), and Fred Hutchinson Cancer Research Center (Seattle, USA) have used microfluidic technology to overcome these problems. All of the necessary steps occur reliably on a specially developed microchip using minimal amounts of solvent and without requiring the cells to be marked. In contrast to conventional microfluidic chips, this one requires neither complex fabrication technology nor components like valves or agitators.

The Self-Digitization Dielectrophoretic (SD-DEP) chip is about the size of a coin and has two parallel microchannels (50 µm deep x 35 µm wide x 3.2 cm long) connected by numerous tiny little chambers. The openings of the microchannels are only 15 µm wide. A thin electrode is stretched along the length of the channels. The channels and chambers are filled with a buffer, an alternating voltage is applied, and the sample is added to one of the microchannels. The team headed by Robbyn K. Anand and Daniel T. Chiu used leukemia cells in their experiments.

Local maxima of the electric field occur at the narrow entrances to the chambers. Cells that enter the chambers are “trapped”. Because the dimensions of the entrance are similar to the average size of a cell, only a single cell can be trapped by each chamber entrance. When the alternating current is switched off and the flow rate is increased by injection of the reagents required for subsequent analysis, the cells are washed into the chambers. An oil is then added to seal the chambers. The cells are then dissolved, and the nucleic acids are released and multiplied and can be identified as leukemia cells by a marker gene.

In future studies, the researchers hope to use the chip to determine the distribution of genetic mutations that are related to resistance in leukemia cells and thus may cause relapses.

Facts, background information, dossiers

  • microfluidic chips
  • nucleic acid analysis
  • dielectrophoresis
  • cells

More about University of Washington

  • News

    Designed antiviral proteins inhibit SARS-CoV-2 in the lab

    Computer-designed small proteins have now been shown to protect lab-grown human cells from SARS-CoV-2, the coronavirus that causes COVID-19. In the experiments, the lead antiviral candidate, named LCB1, rivaled the best-known SARS-CoV-2 neutralizing antibodies in its protective actions. LCB ... more

    New 'molecular computers' find the right cells

    Scientists have demonstrated a new way to precisely target cells by distinguishing them from neighboring cells that look quite similar. Even cells that become cancerous may differ from their healthy neighbors in only a few subtle ways. A central challenge in the treatment of cancer and many ... more

    Deep-sea anglerfishes have evolved a new type of immune system

    Deep-sea anglerfishes have evolved a curious reproductive strategy. Tiny males attach themselves to gigantic females so tightly that the tissues of the two animals eventually fuse. The male esssentially turns into a sperm-producing parasite. This phenomenon is known as sexual parasitism whi ... more

More about Angewandte Chemie

  • News

    The Fastest One Wins

    Indole, and structures derived from it, are a component of many natural substances, such as the amino acid tryptophan. A new catalytic reaction produces cyclopenta[b]indoles—frameworks made of three rings that are joined at the edges—very selectively and with the desired spatial structure. ... more

    Radical Attack on Live Cells

    Is there a way to chemically manipulate small, confined areas on cellular surfaces? Scientists have developed a microfluidic probe to send a flow of free radicals on live cells and track the outcome using fluorescence imaging. As outlined in the journal Angewandte Chemie, this approach make ... more

    Degradable sugar-based polymers may store and release useful molecular freight

    Degradable, bio-based polymers offer options for chemical recycling, and they can be a tool to store and release useful molecules. Scientists have developed a class of sugar-based polymers that are degradable through acid hydrolysis. The researchers also integrated “cargo” molecules in the ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: