07-Sep-2018 - Julius-Maximilians-Universität Würzburg

A Step Ahead in Pharmaceutical Research

Researchers have developed a method that makes it possible to measure the activation of receptors in a very short time

Hormones and other neurotransmitters, but also drugs, act upon receptors. “Their active substances bind to the receptors and modify the three-dimensional receptor arrangement regulating the downstream signal pathways,” says Hannes Schihada from the Institute for Pharmacology and Toxicology at the University of Würzburg (JMU).

A special case are G protein–coupled receptors (GPCR). “About 30 percent of all authorized drugs worldwide act upon these receptors,” explains Hannes Schihada, “but their potential is not yet fully utilized.” So far, it was not possible to test the effect of millions of potential drugs on the GPCR arrangement within a very short time. “This has been a stumbling block to the discovery of novel pharmaceutical substances and the research of still unknown GPCRs,” says Dr. Isabella Maiellaro, who is in charge of the project together with Professor Martin Lohse.

The JMU team has now developed a method that allows the determination of both activity and potency of GPCR ligands in living cells using high throughput technology.

What the new method can do

The name of the method is BRET (bioluminescence resonance energy transfer-based sensor design). “It can be used not only for GPCRs but for a lot of different biomolecules,” explains Schihada.

The universal sensor design now allows the exploration of receptor conformational changes in living cells with the high-throughput method. This enables a much faster pharmacological characterization by a high number of test combounds that directly act on the receptor, independently of their downstream receptor signal pathways.

“This technology can contribute to a faster and better understanding of the different levels of effectiveness of drugs and thus drive the development of novel therapeutic concepts,” says Schihada. The study of novel receptor targets will yield a higher array to develop drugs that have less side-effects and are more efficient.

Furthermore, the sensors could help to better understand what is called orphan GPCRs – GPCRs whose function and ligands are still largely unknown. “With these findings we can lay the foundation for the treatment of severe diseases that were hitherto difficult to treat, such as Alzheimer’s or multiple sclerosis,” says the scientist.

The research has been funded by the Federal Ministry for Education and Research. The scientists now want to expand their range of sensors suitable for high throughput.

Facts, background information, dossiers

  • drug discovery
  • receptors
  • G-protein coupled receptors
  • biomolecules
  • high-throughput mea…

More about Uni Würzburg

  • News

    Protein Spheres Protect the Genome of Cancer Cells

    MYC genes and their proteins play a central role in the emergence and development of almost all cancers. They drive the uncontrolled growth and altered metabolism of tumour cells. And they help tumours hide from the immune system. MYC proteins also show an activity that was previously unkno ... more

    Gene activity in a test tube

    When searching for the causes of illnesses and developing new treatments, it is absolutely vital to have a precise understanding of the genetic fundamentals. Würzburg researchers have devised a new technique for this purpose. Pathological processes are usually characterised by altered gene ... more

    Artificial Enzyme Splits Water

    Chemists from Würzburg present a new enzyme-like molecular catalyst for water oxidation. Mankind is facing a central challenge: it must manage the transition to a sustainable and carbon dioxide-neutral energy economy. Hydrogen is considered a promising alternative to fossil fuels. It can be ... more

  • q&more articles

    High-tech in the beehive

    Healthy honeybee colonies are crucial to maintaining the natural diversity of flowering plants and the global production of plant-derived foodstuffs. As much as 35 % of this production depends on insect-based pollination, in which the honeybee (Apis mellifera) plays a leading role. For fund ... more

  • Authors

    Prof. Dr. Jürgen Tautz

    studied biology, geography and physics at the University of Konstanz before receiving his doctorate from the University on an ecology-related subject. Work in insect, fish and frog bio-acoustics was followed by his foundation of the BEEgroup at the University of Würzburg in 1994, a group th ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: