q&more
My watch list
my.chemie.de  
Login  

News

New Ways to Look at Protein-RNA Networks

qimono, pixabay.com, CC0

A network of interacting RNAs and proteins is active in each of our cells (symbolic image).

10-Dec-2018: For their vital tasks, all RNA molecules in our cells require proteins as binding partners. Scientists at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and colleagues from the European Molecular Biology Laboratory (EMBL) have developed the first method with which they can analyze the composition of the entire RNA-protein network of the cell.

RNA molecules perform vital tasks in every cell: Messenger RNA (mRNA) helps to translate the genetic information stored in the DNA into proteins. However, many other RNA molecules exist, which are not being translated into protein. In fact, only five percent of RNA in a human cell is mRNA.

For many of their functions, RNA molecules have to interact with proteins. Sometimes, different types of RNA come together with specific proteins to form highly complex molecular machines, the best example being the ribosome where protein synthesis takes place.

"A gigantic network of interacting RNAs and proteins is active in each of our cells, but we still know extremely little about the exact composition of this network. We want to understand which proteins bind to RNAs, and how this differs between cell types, or in conditions when cells are stressed. We have now developed a method that enables us to investigate this for the first time," says Jeroen Krijgsveld from the DKFZ.

Until now, such analyses could only be carried out for one class of RNAs, namely mRNAs. mRNAs are the templates that instruct protein sequence. Protein interactions with all other so-called non-coding RNA types, some of which have only been known for a few years, could not be detected using the existing method. "Non-coding RNAs by far outnumber mRNA molecules, and they fulfill various regulatory purposes" explains Krijgsveld.

Together with colleagues from EMBL, Krijgsveld has now succeeded in developing a method termed XRNAX to analyze the interactions of all RNA classes with cellular proteins. Using XRNAX, the scientists can also make quantitative statements: They can not only see what protein binds RNA but also to what extent. In this way, they were able to observe how RNA binding changes when cells are exposed to a toxin. In addition, with the new method the research team identified hundreds of proteins that previously were not known to bind RNA.

"With XRNAX we are able to measure all interactions between protein and RNA, which is something nobody could measure before." explains Jakob Trendel, who developed XRNAX. "Many protein-RNA interactions are suspected to be the underlying cause for diseases including cancer, Amyotrophic lateral sclerosis, or viral infections like HIV. Now we have a way to look at them."

Original publication:
Jakob Trendel, Thomas Schwarzl, Ananth Prakash, Alex Bateman, Matthias W. Hentze, Jeroen Krijgsveld; "The Human RNA-Binding Proteome and Its Dynamics During Arsenite-Induced Translational Arrest"; Cell; 2018

Facts, background information, dossiers

  • RNA
  • proteins
  • cells
  • messenger RNA
  • RNA analytics

More about Deutsches Krebsforschungszentrum

More about European Molecular Biology Laboratory

  • News

    Replication cycle of SARS-CoV-2 in 3D

    As the global coronavirus pandemic continues, scientists are not only trying to find vaccines and drugs to combat it, but also to continuously learn more about the virus itself. “By now we can expect the coronavirus to become seasonal,” explains Ralf Bartenschlager, professor in the Departm ... more

    Scientists identify synthetic mini-antibody to combat COVID-19

    The ability of SARS-CoV-2 to infect cells depends on interactions between the viral spike protein and the human cell surface protein ACE2. To enable the virus to hook onto the cell surface, the spike protein binds ACE2 using three finger-like protrusions, called the receptor binding domains ... more

    Melting reveals drug targets in a living organism

    Developing new medicines and understanding how they target specific organs often gives a crucial advantage in the fight against human diseases. An international team led by researchers at the European Molecular Biology Laboratory and Cellzome, a GSK company, has developed a technology to sy ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE