q&more
My watch list
my.chemie.de  
Login  

News

Prostate cancer – New computer model enables researchers to predict course of disease

Copyright: Niclas Blessing/UKE

Prostate tissue section from human prostate sample. Prostate cells are stained green. Red and white staining denotes changes indicative of tumor development.

18-Dec-2018: How does a normal cell turn into a deadly cancer? Seeking an answer to this question, and working alongside other international working groups, researchers from Charité – Universitätsmedizin Berlin examined the tumor genomes of nearly 300 prostate cancer patients. Their findings describe the ways in which changes in the prostate cells’ genetic information pave the way for cancer development. Using a newly-developed computer model, it is now possible to predict the course of the disease in individual patients. It is hoped this will enable clinicians to develop tailor-made treatments.

In Germany, prostate cancer is the most common malignancy in men, with close to 60,000 new cases diagnosed every year. These Tumors are usually slow-growing, meaning that not all patients require immediate treatment. Until recently, physicians had been unable to distinguish between benign and aggressive forms of the disease, particularly when dealing with tumors diagnosed at an early stage in the disease process.

Working alongside a number of other research groups from within Germany and abroad, Charité-based researchers helped to develop criteria that would make this type of classification possible. To do so, they studied the molecular profiles of close to 300 prostate tumors. They sequenced the information encoded within the cells’ genetic material, recorded chemical changes to the genetic code, and measured the activity of specific genes within cancerous tissues. An analysis of their data has shed light upon the temporal order of mutational events involved in the development of prostate cancer. “We were able to identify tumor subtypes that progress at different rates and therefore require different types of treatment,” says one of the study's lead authors, Prof. Dr. Thorsten Schlomm, Director of Charité's Department of Urology.

He adds: “We now know which of these mutations occur first, initiating the process of change from prostate cells to tumor cells, and which of them are more likely to follow later.” The researchers then used these results to develop a computer-based model capable of predicting the likely course of the disease in individual patients. “When an individual patient's tumor shows a specific mutation, we are now able to predict which mutation is likely to follow, and how good the patient's prognosis is,” explains Prof. Schlomm. “Our team is currently busy incorporating our computer model into the treatment process at Charité. This will enable clinicians to model a particular treatment’s likelihood of success. As for the timescale involved, we expect it will take two to three years for this algorithm-based method to become clinical routine.”

In an effort to improve the reliability of prognoses, the research consortium is planning to spend the next few years collating additional data on thousands of patients, which they will then use to further develop and enhance their computer model. They will achieve this by working with Berlin’s newly established urology network (Hauptstadt-Urologie-Netzwerk), which brings together urology specialists from Charité and private practice. Their ultimate aim is to make it easier for physicians to decide on the most suitable treatments for individual patients.

Original publication:
Gerhauser C et al.; "Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories"; Cancer Cell; 2018 Dec 10.

Facts, background information, dossiers

  • prostate cancer
  • cancer
  • mutations
  • computer models

More about Charité

  • News

    How Artificial Intelligence Detects Rare Diseases

    Every year, around half a million children worldwide are born with a rare hereditary disease. Obtaining a definitive diagnosis can be difficult and time consuming. In a study of 679 patients with 105 different rare diseases, scientists from the University of Bonn and the Charité - Universit ... more

    Quality control inside the cell

    The ability to dispose of proteins that are either aberrant or (in the worst case) toxic is fundamental to a cell's survival. Researchers from Charité - Universitätsmedizin Berlin have been able to demonstrate the manner in which two specific proteins recognize defective messenger RNAs (mol ... more

    Nanostructures in human teeth

    Dentin is one of the most durable biological materials in the human body. Researchers from Charité–Universitätsmedizin Berlin were able to show that the reason for this can be traced to its nanostructures and specifically to the interactions between the organic and inorganic components. Mea ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE