16-Jan-2019 - Albert-Ludwigs-Universität Freiburg

Stem Cells Regulate Their Fate by Altering Their Stiffness

Doing More with Less

In adults, mesenchymal stems cells (MSCs) are primarily found in bone marrow and they play a vital role in repair of damaged organs. The transformation of a single MSC into complex tissue like cartilage and bone starts with its association with other MSCs in order to form microscopic clusters via a process termed as condensation. While it is known that this condensation step is important for skeletal development the exact role it plays in formation of bone and cartilage is not understood. A team led by Prof. Dr. Prasad Shastri and Dr. Melika Sarem of the Institute for Macromolecular Chemistry at the University of Freiburg present evidence for autonomous control of chondrogenesis in MSCs.

They discovered that reducing the number of cells participating in condensation process leads to the activation of an intrinsic differentiation program. This prompts MSCs to become cartilage cells even in absence of chondro-inductive growth factors irrespective of donor age and sex. Sarem and Shastri further identified that two cell-membrane proteins, Caveolin-1 and N-Cadherin are differentially regulated during the condensation step and function as interactive forces like a Yin-Yang of chondrogenic differentiation. "The fact that we need lesser cells to create better quality tissue is extremely exciting as it opens new avenues for stem cell therapies" summarizes Sarem.

In collaboration with Dr. Oliver Otto, at the University of Greifswald, the Freiburg researchers demonstrated that the chondrogenic potential of MSCs correlates with emergence of a stiffer phenotype and increase in cell size. Their findings allude to a hitherto unknown mechanobiology paradigm in MSC differentiation. “Since MSCs harvested from adult bone marrow are a heterogeneous population of cells and their ability to undergo differentiation into cartilage or bone cells varies from donor to donor, our findings have significant implication for MSC-based strategies for engineering cartilage and bone tissue,” explains Shastri.

Facts, background information, dossiers

  • bone cells
  • stem cells
  • mesenchymal stem cells
  • bone marrow

More about Uni Freiburg

  • News

    Molecular structure of one of the most important receptors in the immune system unraveled

    The surface of B cells is covered with antigen receptors with which they recognize invading pathogens such as bacteria and viruses. When a B cell receptor binds to an antigen, that is, to a foreign structure, the B cell is activated and triggers the production of antibodies. Antibodies are ... more

    A molecular machine at work

    The greenhouse gas nitrous oxide (N2O) is produced as a by-product of industrial processes and through the use of fertilizers in agriculture. It is making a steadily growing contribution to climate change and the depletion of the ozone layer. It is so chemically unreactive that it remains i ... more

    New discoveries about the origin of the brain’s immune system

    What gets into the brain and what doesn’t is strictly regulated. Researchers at the Faculty of Medicine at the University of Freiburg have now studied phagocytes that coat the blood vessels in the brain and reinforce the blood-brain barrier. As the scientists from the Institute of Neuropath ... more

  • q&more articles

    Modular biofactories at the cellular level

    Despite his love for complex molecular architectures, this „dyed-in-the-wool“ bio-organic chemist has never embraced the conventional segregation of synthetic polymers and bio­logical macromolecules. All molecules are composed of atoms, after all. Why make an artificial distinction? Why not ... more

    Bookmarks

    From a pluripotent stem cell a muscle cell or a liver cell can form, which despite their difference in appearance, are genetically identical. From one and the same genotype, therefore, the most diverse phenotypes can be formed – epigenetics is making it possible! It is a very exciting area ... more

  • Authors

    Dr. Stefan Schiller

    Stefan M. Schiller studied chemistry at Gießen (Mainz, Germany) and the University of Massachusetts, majoring in macromolecular chemistry and biochemistry. For his doctorate in biomimetic membrane systems he worked till 2003 at the Max Planck Institute for Polymer Research in Mainz. Researc ... more

    Julia M. Wagner

    Julia M. Wagner studied pharmacy in Freiburg (licensure 2008). Since 2008 she is a PhD student and research assistant in the group of Professor Dr. M. Jung. Her research focuses ­on the cellular effects of histone deacetylase inhibitors. more

    Prof. Dr. Manfred Jung

    Manfred Jung is a graduate of the University of Marburg, where he studied pharmacy (licensure  1990) and obtained his doctorate in pharmaceutical chemistry with Prof. Dr. W. Hanefeld. After a post-doctorate at the University of Ottawa, Canada, he began with independent research in 1994 ­at ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: