q&more
My watch list
my.chemie.de  
Login  

News

Semiconductors Combine Forces in Photocatalysis

Active photocatalyst: 2D/2D heterojunction of black phosphorus and bismuth tungstate

© Wiley-VCH

29-Jan-2019: A significant advance in the photocatalytic activity of conventional materials is demonstrated by a two-dimensional heterostructure comprising nanolayers of two semiconductors: black phosphorus and bismuth tungstate. As researchers have reported in the journal Angewandte Chemie, this catalyst harnesses the energy of visible light to split water and produce hydrogen, and to break down nitrogen monoxide in exhaust gas.

Just as plants use photosynthesis, certain semiconductors are able to absorb the energy of light and use this to power chemical reactions. For example, bismuth tungstate (Bi2WO6) should, in principle, be suitable for the photocatalytic degradation of nitrogen monoxide (NO) and the production of hydrogen. However, results so far have not been very satisfactory. One approach to improving the performance of this material is to bind two-dimensional nanolayers of the bismuth tungstate into a layered heterojunction with a second nanolayer of a different semiconductor.

A team led by Dongyun Chen and Jianmei Lu at Soochow University, Suzhou, and Jiangsu University, Zhenjiang (China) found that black phosphorus may be a suitable partner for this type of heterostructure. This material demonstrates photocatalytic properties, though it has had limited application to date.

Black phosphorus consists of rippled layers of six-membered rings that can be split into individual atomic layers. The researchers covered these nanolayers evenly with 50 nm chips of bismuth tungstate. The two semiconductors are in very close contact in this simply and efficiently producible heterostructure, resulting in a synergetic effect. The black phosphorus provides a broad absorption range into the spectrum of sunlight. The energy levels of the electrons in the two materials are favorably placed. This allows the light-induced positive and negative charges (electron–hole pairs) to be efficiently separated, transported within the heterostructure, and transferred to molecules. The researchers propose that the charge-transfer mechanism resembles the so-called Z-scheme present in photosynthesis.

As expected, the photocatalytic degradation of NO by the heterostructure was significantly more effective than with other bismuth-based materials. For the photocatalytic production of hydrogen, an additional platinum-based co-catalyst was added. Under irradiation, electrons can move from the heterostructure to platinum atoms, and from there they are able to rapidly reduce the H+ ions in water to form hydrogen gas. With visible light, the efficiency of the catalytic process was nine times that of pure bismuth tungstate.

The researchers suggest that black phosphorus may have broad applicability that extends to renewable energies and treatment of exhaust gases.

Original publication:
Jundie Hu et al.; "Z‐Scheme 2D/2D Heterojunction of Black Phosphorus/Monolayer Bi2WO6 Nanosheets with Enhanced Photocatalytic Activities"; Angewandte Chemie International Edition; 2019

Facts, background information, dossiers

  • chemical reactions
  • bismuth tungstate
  • photocatalysts

More about Soochow University

  • News

    The Making of Biorelevant Nanomaterials

    The interactions of biological macromolecules such as nucleic acids, proteins, and polysaccharide–protein conjugates can be mimicked by artificial polyelectrolytes. Such synthetic polyionic complexes are expected to serve as novel platforms to stabilize and deliver drugs, proteins, or nucle ... more

More about Angewandte Chemie

  • News

    Microglia Turned On

    Part of the immune system in the brain is made up of so-called microglia cells. Korean and Singaporean researchers have now developed a fluorescent probe that specifically labels this type of macrophage. The cells were visualized in cell culture and in the live brains of rodents. As detaile ... more

    Electrochemical extraction of energy from seawater

    Underwater vehicles, diving robots, and detectors require their own energy supply to operate for long periods independent of ships. A new, inexpensive system for the direct electrochemical extraction of energy from seawater offers the advantage of also being able to handle short spikes in p ... more

    Tracking Small Things in Cells

    Living cells can react to disturbances with a changed metabolism, but direct observation of trafficking metabolites in live cells is difficult. An international team of scientists has now developed a class of remarkably small fluorophores called SCOTfluors. The dyes emit light in the visibl ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE