05-Feb-2019 - Rijksuniversiteit Groningen

Optimized Binding Cavity

Directed evolution of a designer enzyme with an unnatural catalytic amino acid

The impressively high conversion rates of natural enzymes partly result from increasing the catalytic activity of a selected few amino acid side chains through precise positioning within the protein binding cavity. Scientists have now demonstrated that such fine-tuning is also possible for “designer” enzymes with unnatural catalytic amino acids. In the journal Angewandte Chemie, they report that laboratory “evolution” of a designer enzyme with an aniline side chain led to variants with significantly higher activity.

The speed and selectivity with which enzymes in nature catalyze conversions are enviable. To catalytically boost unnatural reactions, researchers mimic enzymes with the help of protein frameworks realized by computer-aided protein design. Further optimization is achieved through repetition of a Darwinian cycle: 1) diversification through mutation, 2) identification of improved catalysts, and 3) amplification of the more efficient enzyme variants. This allows for the production of designer enzymes with very high activities.

Researchers led by Clemens Mayer and Gerard Roelfes at the University of Groningen (the Netherlands) have now demonstrated that this type of directed evolution is also a method for improving the efficiency of a novel class of designer enzymes: enzymes that contain an amino acid that is not utilized by nature.

Starting with a protein from Lactococcus lactis, a bacterium used in the production of dairy products such as cheese and buttermilk, the researchers synthesized a designer enzyme that contains an amino acid with an abiotic aniline side chain (aminophenylalanine). Like free aniline, this amino acid catalyzes the reaction of aldehydes with hydrazines or hydroxylamines to make hydrazones or oximes, respectively.

To increase the activity of the enzyme, the researchers produced enzyme variants with mutations at amino acids near the aniline side chain. Screening of about 400 mutants yielded two candidates with better activity, one of which was subjected to a second evolutionary round. This led to the discovery of more beneficial mutations. To identify synergetic effects, multiple favorable mutations were combined to produce further variants. In this way, it was possible to increase the conversion rate of the enzyme by a factor of 90.

The researchers emphasize that, akin to natural enzymes, “this drastic increase is based on strengthening the inherent catalytic activity of the aniline side chain. We intend to use this principle to incorporate further organic catalysts as side chains in enzymes, and to use directed evolution to convert these into highly effective designer enzymes that can rapidly and efficiently carry out synthetically important reactions that would otherwise only run very slowly.”

Facts, background information, dossiers

  • enzymes
  • aniline
  • directed evolution

More about Uni Groningen

  • News

    Small-volume, high-throughput organic synthesis

    University of Groningen Professor of Drug Design, Alexander Dömling, has devised a method to rapidly synthesize thousands of new molecules and evaluate their properties as potential drugs. In a paper published by Science Advances on 5 July, he shows that this method works well when applied ... more

    New method measures single molecules from nanoliter of blood in real time

    University of Groningen scientists, led by Associate Professor of Chemical Biology Giovanni Maglia, have designed a nanopore system that is capable of measuring different metabolites simultaneously in a variety of biological fluids, all in a matter of seconds. The electrical output signal i ... more

    New technique reveals causes of aging in yeast

    University of Groningen scientists have designed a unique experiment to study ageing in yeast cells. By following molecular processes inside ageing yeast, they discovered that an overproduction of the proteins needed to make new proteins could be the root cause of the cellular processes tha ... more

More about Angewandte Chemie

  • News

    Long-Lasting, Intense Afterglow

    A team of researchers from Lithuania has developed organic dyes showing a particularly long afterglow after being excited by light. Doping a polymer with newly synthesized diboraanthracene dyes resulted in an intense red or blue–green dual afterglow, which was composed of persistent thermal ... more

    Primeval Reaction Pathways

    Naturally occurring chemical reactions may have evolved into the biochemical processes we know today. A team of researchers has now discovered that a reaction sequence from the so-called reverse Krebs cycle—a fundamental biochemical process—can also take place without enzymes. The team writ ... more

    Nanocrystals Store Light Energy and Drive Chemical Reactions

    Chemistry is increasingly making use of the trick plants can do with photosynthesis: driving chemical reactions that run poorly or do not occur spontaneously at all with light energy. This requires suitable photocatalysts that capture light energy and make it available for the reaction. In ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: