q&more
My watch list
my.chemie.de  
Login  

News

How sleep strengthens the immune system

Scientists discover new mechanism that supports our immune system during sleep

Tanja Lange

Adhesion of T cells impaired after just three hours of sleep deprivation.

14-Feb-2019: Getting enough sleep is vital to supporting our immune system in fighting off pathogens – so much is common knowledge. But what we don't know is how exactly sleep affects certain immune functions. Scientists at the University of Tübingen and the University of Lübeck have now discovered a new mechanism by which sleep supports the immune system. The team led by Dr. Luciana Besedovsky and Dr. Stoyan Dimitrov from the Institute of Medical Psychology and Behavioral Neurobiology in Tübingen and Dr. Tanja Lange from the Clinic for Rheumatology and Clinical Immunology in Lübeck were able to show that the function of T cells, the white blood cells that are responsible for combating pathogens, was impaired after only three hours without sleep.

The scientists conducted a 24-hour experiment with volunteers: One group was allowed to sleep for eight hours at night, a second group stayed awake for the whole period. During the experiment, blood was regularly taken from the participants. In particular, the research team examined the binding strength of T cells to a molecule named ICAM-1 (intercellular adhesion molecule-1), which enables them to attach to other cells, in a process known as adhesion.

This is important for their function: "T cells circulate constantly in the bloodstream looking for pathogens. Adhesion to other cells enables them to migrate to different areas in the body and, for example, dock onto infected cells in order to subsequently kill them," says Stoyan Dimitrov, first author of the study. As the study shows, the adhesion of T cells was significantly reduced in sleep deprived subjects.

In order to further investigate how sleep affects T-cell function, plasma – the part of the blood that contains soluble substances such as hormones – was taken from sleeping and sleep deprived subjects. This plasma was applied to isolated T cells for a few minutes. Plasma taken from sleep deprived subjects reduced the adhesion significantly compared to the plasma from subjects who had slept.

In another experiment, the team was able to reverse this suppression of T-cell function by blocking Gαs-coupled receptors. Amongst other substances, the stress hormone adrenaline and prostaglan-dins, which play a role in inflammation, bind via these receptors. "This shows that even following brief sleep deprivation soluble molecules activate these receptors and thereby impair the adhesion of the T cells," says Luciana Besedovsky, head of the study.

In parallel experiments, the researchers were also able to show that some of the soluble molecules that bind to this receptor class, such as adrenaline, prostaglandins and the neuromodulator adeno-sine, strongly impair adhesion when administered directly to T cells. The same substances are also strongly elevated in a number of pathological conditions, such as chronic stress or cancer. "This means that our findings also have clinical relevance outside sleep research. They could explain why the immune system is suppressed in some diseases," says Lange. Besedovsky summarizes: "Just three hours without sleep are sufficient to reduce the function of important immune cells. Our results show a potential fundamental mechanism by which sleep helps us fight infection."

Original publication:
Stoyan Dimitrov, Tanja Lange, Cécile Gouttefangeas, Anja T.R. Jensen, Michael Szczepanski, Jannik Lehnnolz, Surjo Soekadar, Hans-Georg Rammensee, Jan Born and Luciana Besedovsky; "Gαs-coupled receptor signaling and sleep regulate integrin activation of human antigen-specific T cells"; Journal of Experimental Medicine; 2019

Facts, background information, dossiers

  • sleep research
  • immune system
  • T cells

More about Universität Tübingen

  • News

    Natural substance as alternative to controversial glyphosate?

    Researchers at the University of Tübingen have discovered a natural substance that could compete with the controversial herbicide glyphosate: The newly discovered sugar molecule synthesized from cyanobacteria inhibits the growth of various microorganisms and plants but is harmless to humans ... more

    Breakthrough in the investigation of feared pathogens

    Researchers at the University of Tübingen and the German Center for Infection Research (DZIF) have achieved a breakthrough in the decoding of multi-resistant pathogens. The team led by Professor Andreas Peschel and Professor Thilo Stehle was able to decode the structure and function of a pr ... more

    Defects at the spinterface disrupt transmission

    Magnets made of organic materials have a number of advantages over the classic metal or alloy magnets. They are chemically more flexible, cheaper to make, and can be better adapted to various purposes and varying designs. In practice, researchers want to apply both types of magnets in elect ... more

  • q&more articles

    Putting Pressure on Pharmaceuticals

    As a general rule, the pharmaceuticals industry develops new drugs by applying a complex procedure of formulation utilising excipients suitable for the final drug dosage form. Such development processes are carried out by the companies’ technical departments and in many cases result in solu ... more

    Staying power

    Geoscientists, biologists and chemists at the University of Tübingen are working in collaboration with IFAM (Fraunhofer Institute for Manufacturing Technology and Advanced Materials in Bremen, Germany) to uncover the workings of insect surface adhesion. The goal of this project is the synth ... more

  • Authors

    Prof. Dr. Michael Lämmerhofer

    Michael Lämmerhofer studied pharmacy at the University of Graz, receiving his doctorate in pharmaceutical chemistry in 1996. This was followed by a move to the University of Vienna, where, with the exception of a one-year postdoc at the University of Berkeley (from 1999 to 2000), his positi ... more

    Heike Gerhardt

    Heike Gerhardt studied chemistry at the universities of Tübingen and Vienna, already choosing to specialize in analysis during her master’s degree at the University of Vienna. She has worked at the University of Tübingen under Prof. Lämmerhofer since 2012: with her doctoral research work ne ... more

    Prof. Dr. Martin A. Wahl

    studied pharmacy at the University of Tübingen and was awarded his doctorate in 1984. Following a one-year period of research at the Karolinska Institutet in Stockholm, he completed his habilitation in pharmacology and toxicology in 1995. In 1998, he moved to the University of Tübingen’s Ph ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE