My watch list


Cell editors correct genetic errors

Study improves understanding of a widespread mechanism

© Foto: Simon Zumkeller/Uni Bonn

Volker Knoop, Elena Lesch, Bastian Oldenkott, Yingying Yang and Mareike Schallenberg-Rüdinger are investigating a gene correction mechanism in plants known as RNA editing. During this process, one of the RNA building blocks (cytidine, abbreviated C) is chemically converted into another (uridine, abbreviated U).

05-Mar-2019: Almost all land plants employ an army of editors who correct errors in their genetic information. Researchers at the University of Bonn have now transferred parts of this machinery into a bacterium. Their results confirm a controversial thesis on the functioning of this widespread mechanism.

One might think that the genetic machinery of higher plants was invented by a bureaucrat who likes to pick the most complicated option: Much of the plants' genetic material contains small errors. The DNA in the power plants of the plant cells, the mitochondria, is particularly affected. The plant must correct these errors, otherwise its energy supply would collapse. And it does make these corrections, but in a very complicated way: It does not improve the DNA, i.e. the actual building instructions of the mitochondria. Instead, it corrects the copies made of these instructions. This is like printing an erroneous newsletter a thousand times and then correcting the misspelled word in each of these printouts.

More than that: The editors who make these corrections are absolute specialists. They usually only recognize one specific error. Some plants therefore have 500 or more different proofreaders. "The DNA transcripts consist of RNA; we therefore call this mechanism RNA editing," explains Prof. Dr. Volker Knoop from the Institute for Cellular and Molecular Botany at the University of Bonn. "We are only just beginning to understand why it exists and how it functions in detail."

Knoop and his coworkers have at least come one step closer to answering the second question. For this purpose, they transported some editors from the moss Physcomitrella patens to the intestinal bacterium E. coli. "We wanted to find out whether they edit the bacterial RNA there," said Knoop's colleague Dr. Mareike Schallenberg-Rüdinger. "Until now it was disputed whether they can do this alone or whether they need help."

Most researchers assume that RNA editing is usually a two-step process: The editors (the so-called PPR proteins) recognize the error. To correct it, they then call on a kind of RNA 'correction fluid' - an enzyme called cytidine desaminase - for help.

RNA 'correction fluid' also works in E. coli

However, some PPR proteins have a certain sequence of amino acids at their end which are known to theoretically act as cytidine desaminase, which means they may always carry their bottle of correction fluid with them. "We were in fact able to show that this group of PPR proteins is able to edit the RNA of E. coli," said Mareike Schallenberg-Rüdinger. "So it does not need a separate desaminase to do this." However, if the scientists changed even one of the important 'correction fluid' amino acids, the PPR protein lost its ability to correct.

The researchers also succeeded in programming PPR proteins in such a way that they were able to detect specific errors. "Experiments such as these help us to better understand RNA editing," explains Volker Knoop. "The model organism E. coli also helps us in this process, as it would be much more difficult to carry out these experiments in plants."

In the medium term, the scientists also hope to find an answer to the question as to why this elaborate editorial machinery developed in the course of evolution. There are some theories on this: For example, RNA editing might enable plants to "collect" mutations. Over time, combinations of many different changes may form that would individually be harmful or even fatal, but in their sum provide the plant with a survival advantage.

The cumbersome process would therefore have an important purpose: as a playground for evolution.

Original publication:
Bastian Oldenkott, Yingying Yang, Elena Lesch, Volker Knoop und Mareike Schallenberg-Rüdinger; "Plant-type Pentatricopeptide Repeat proteins with a DYW domain drive C-to-U RNA editing in Escherichia coli"; Communications Biology; 2019

Facts, background information, dossiers

  • RNA
  • plants
  • evolution
  • Physcomitrella patens
  • RNA editing
  • Escherichia coli

More about Universität Bonn

  • News

    New method allows precise gene control by light

    A novel optical switch makes it possible to precisely control the lifespan of genetic "copies". These are used by the cell as building instructions for the production of proteins. The method was developed by researchers from the universities of Bonn and Bayreuth. It may significantly advanc ... more

    A "corset" for the enzyme structure

    The structure of enzymes determines how they control vital processes such as digestion or immune response. This is because the protein compounds are not rigid, but can change their shape through movable "hinges". The shape of enzymes can depend on whether their structure is measured in the ... more

    How cells recognize uninvited guests

    Until now, the immune sensor TLR8 has remained in the shadows of science. A research team led by the University of Bonn has now discovered how this sensor plays an important role in defending human cells against intruders. The enzymes RNaseT2 and RNase2 cut ribonucleic acids (RNAs) of bacte ... more

  • q&more articles

    How gold plasma can make hidden structures visible

    In recent years, microcomputed tomography (μCT) has become a standard method in many medical, scientific and industrial fields. This non-invasive technique enables three-dimensional imaging of a wide variety of structures. However, a new combination of methods now makes it possible to visua ... more

  • Authors

    Dr. Markus Lambertz

    Markus Lambertz, born in 1984, studied biology with a focus on zoology, paleontology and geology in Bonn, where he graduated with a diploma degree in 2010. After a research stay over several months in Ribeirão Preto (Brazil) he worked on his doctoral thesis in Bonn, receiving his doctorate ... more

    Prof. Dr. Jürgen Bajorath

    Jürgen Bajorath studied biochemistry and obtained diploma and Ph.D. degrees from the Free University Berlin (West). He is Professor and Chair of Life Science Informatics at the Bonn-Aachen International Center for Information Technology (B-IT) and the LIMES Institute of the University of Bo ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:


Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE