19-Mar-2019 - Universität Bayreuth

Biologists develop new method of cloning

High efficiency at low cost

DNA, which contains the genetic information of an organism, consists of long “chains” of nucleotides. In order to study the functions based on the sequence of these building blocks, DNA molecules must be inserted in carrier molecules (plasmid-vectors) to be multiplied. For this cloning process, a research team from the University of Bayreuth has developed a highly efficient, fast and inexpensive method, versatile enough to be deployed in all areas of biology, biochemistry and biotechnology. A key feature of the method is that it makes any painstaking screening of bacterial colonies unnecessary.

One thing that all methods subsumed under the term molecular cloning have in common is that the DNA fragments-of-interest are first incorporated into larger carrier molecules, the plasmid-vectors. Bacteria are then made to take up these vectors bearing the DNA-fragments. By the bacteria reproducing and forming bacterial colonies, the DNA fragments are multiplied thousands of times. Up to now, however, these methods have had one considerable drawback: since the insertion of DNA fragments into the carrier molecule does not always proceed as smoothly and perfectly as required, only some, but by no means all, colonies come to possess the vectors with the DNA fragments to be duplicated. In order to identify these “success stories”, time-consuming and expensive screening, up to now, has been unavoidable.

The Bayreuth researchers led by Prof. Dr. Stefan Schuster have now succeeded in making this screening redundant. The vector they have been utilizing is a plasmid that contains a toxic gene. DNA fragments are then incorporated into the plasmid in such a way as to replace this very gene. If this does not succeed, the plasmid keeps its toxic potential. And if, in turn, this plasmid is taken up by an E. coli-bacterium, its toxic effect sets in: It interferes with the bacterium’s cell division and therefore its ability to build colonies. In this way, it can be guaranteed right from the start, that only those E. coli-bacteria that do, in fact, contain the DNA fragments will form colonies. They will not subsequently have to be painstakingly selected. “The reason why our new cloning system is so efficient is that the selection of the bacteria equipped with the cloned DNA occurs reliably and all by itself. The multiplied plasmids can then be isolated from these bacteria and utilized – to analyse the function of the cloned DNA, or as the case may be, deployed in the biotechnological production of proteins”, says Bayreuth biologist Dr. David Richter, lead author of the study.

Moreover, the method presented in Scientific Reports simplifies the cloning procedure in one other aspect: The scientists also optimised an extract (SLiCE) derived from the cells of E. coli-bacteria to make it particularly suitable as a “glue” to string together several DNA fragments. Consequently, it is now possible to insert all sorts of combinations of DNA fragments into the plasmid – and that much more quickly than with previous methods.

The Bayreuth research team have named their new cloning system “ZeBRα”; the acronym deriving from the scientific terms for two decisive factors in their work. The plasmid used is a “Zero-Background Vector”. This means: Bacteria which do not contain the DNA fragments to be duplicated do not form inconvenient colonies in the background. Meanwhile “Redα-Exonuclease” is a component of the E. coli extract, with which various DNA fragments can be strung together and incorporated into the vector.

Building on the research results they have now published, the scientists intend to equip their cloning vectors with additional functions in the future to make it even more useful. In particular, they plan to further optimize the vector to be able to simplify the transformation of certain organisms or cell lines. Because such a transfer is also a rare event, it is advantageous if the vector also transports DNA sequences that lead to the formation of fluorescent proteins to monitor the process of transformation. These proteins will then indicate the successful uptake of the plasmid bearing DNA fragments into the organisms or the cells respectively.

Facts, background information, dossiers

  • DNA cloning
  • plasmids
  • Escherichia coli
  • cloning systems

More about Uni Bayreuth

  • News

    New study on optimizing microbial fuel cells shows electrode material can make all the difference

    At present, microbial fuel cells are mainly used in research laboratories to generate electricity. In order for industrial applications to be considered in the future, the fuel cells must be further developed so that they can produce consistently higher amounts of electricity than is curren ... more

    A new peptide system for the targeted transport of molecules into living mammalian cells

    A novel peptide developed at the Universities of Bayreuth and Bristol is eminently suited for the targeted transport of molecules, for example of active substances and dyes, into the cells of mammals. The peptide is characterized by a dual function: It can enter the cell from the outside an ... more

    New spectroscopic insights into hydrogen bonds

    Hydrogen bonds are of fundamental interest in materials science, physics and chemistry. An international team including scientists from the University of Bayreuth has now achieved surprising insights into the formation of hydrogen bonds using a novel method that enables the application of N ... more

  • q&more articles

    Authentic food

    Authentic food is growing in popularity with consumers. In a heavily industrialized market, a regional, single-source and/or specially manufactured product is increasingly becoming a guarantor of greater value. In the premium segment in particular, economically motivated “food fraud” can re ... more

    More than honey?

    For thousands of years, the word “honey” has been synonymous with an all-natural, healthy food. Unsurprisingly, honey has also enjoyed unwavering popularity with consumers – and especially in times when organic food and a healthy lifestyle are more in vogue than ever before. more

    What Are We Eating?

    What ends up on our plates? We used to think we knew – until we were disabused of this notion in early 2013. Instead of beef, there had been large-scale use of processed horsemeat, especially in frozen products and mincemeat. Although this posed no hazard to health, the damage was enormous, ... more

  • Authors

    Dr. Christopher Igel

    completed his undergraduate studies in biochemistry at the University of Bayreuth from 2009 to 2013. He completed his bachelor’s dissertation entitled “Honey Analysis Using NMR” at the BIOmac research centre under the tutelage of Prof. Dr. Schwarzinger. more

    Wolfrat Bachert

    commenced his undergraduate studies in mechanical engineering at TU Dresden before moving to the University of Bayreuth in 2009 to study biology. In 2013, he completed his bachelor dissertation in the Dept. of Biochemistry under the tutelage of Prof. Dr. Wulf Blankenfeldt on the subject of ... more

    Prof. Dr. Stephan Clemens

    Stephan Clemens, Jg. 1963, studied biology in Münster and Brighton, then acquired his doctorate in Münster. Since his postdoc-stay at the University of California San Diego, his scientific interest has been mainly targeted at metal homoeostasis in plants. He uses the models Arabidopsis thal ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: