My watch list


Traffic control of cells

Researchers develop a hydrogel whose stiffness and permeability to cells can be controlled with light

Jo Richers

27-Mar-2019: Cells in the human body can display remarkable differences in their behaviour depending on the mechanical properties of the tissue surrounding them. This is especially true for immune cells, which migrate through the body and are thus constantly exposed to tissues with different properties and must respond appropriately. To enable investigation of how cells respond to dynamic changes in the stiffness of the extracellular environment, researchers from the Freiburg Signalling Research Clusters of Excellence BIOSS and CIBSS and the Cluster of Excellence livMatS joined forces to develop a hydrogel matrix whose stiffness can be reversibly tuned using light.

In the field of optogenetics, light is used to precisely control cellular proteins and processes. Thus far, optogenetics has been primarily used to control events within cells. “In many cases, tools that allow precise spatiotemporal control of the properties of the extracellular environment are lacking,” says Prof. Dr. Wilfried Weber, lead author of the study and member of the Speaker Team of CIBSS – the Centre for Integrative Biological Signalling Studies. “Our ongoing research shows that optogenetics-inspired approaches hold great promise for dissecting how cells respond to dynamic changes in their environment.”

The first step in creating a matrix whose stiffness can be reversibly tuned using light was to find an appropriate molecular switch. After reviewing their publicly available database of optogenetic switches, called OptoBase, the authors decided for the protein Cph1, a bacterial phytochrome which is sensitive to light: It binds to another Cph1 molecule when exposed to red light, and when exposed to far-red light the Cph1 dimers dissociate.

The authors engineered a version of Cph1 with built-in binding sites for cells, and then used this modified photosensor to crosslink branched polyethylene glycol polymers. When the resulting hydrogel was exposed to red light, the Cph1 molecules bound one another and thereby increased the number of crosslinks and thus the stiffness of the matrix. In contrast, exposure to far-red light led to dissociation of Cph1 dimers and softening of the matrix. The group of Prof. Dr. Andreas Walther from the Cluster of Excellence livMatS – Living, Adaptive and Energy-autonomous Materials Systems was involved in the elucidation of the physical properties of the hydrogels – a critical parameter space for cellular migration – under different illumination conditions.  “This system is ideal for investigating how cells respond to dynamic changes in the mechanical properties of their environment,” explains first author Dr. Maximilian Hörner. “The properties of the material can be regulated within seconds in a fully reversible and finely tunable manner.”

In experiments analysing migration of T cells, a type of immune cell that can fight cancer, the authors demonstrated that only the softer parts of the matrix that were exposed to far-red light were permeable for migration of T cells.  “While we observed that tumour-fighting T cells fail to migrate through a stiff matrix, it is well known that tumour cells preferentially migrate through stiff tissues to initiate invasion and metastasis,” says group leader PD Dr. Susana Minguet, a collaborator on the study. “This tunable matrix recapitulates the dynamic environments immune cells face when migrating through healthy and tumour tissues and has the potential not only to explain the failure of some T cell-based cancer immunotherapies, but also to inspire improved therapeutic approaches.”

Original publication:
Hörner M., Raute K., Hummel B., Madl J., Creusen G., Thomas O.S., Christen E.H., Hotz N., Gübeli R.J., Engesser R., Rebmann B., Lauer J., Rolauffs B., Timmer J., Schamel W.W.A., Pruszak J., Römer W., Zurbriggen M.D., Friedrich C., Walther A., Minguet S., Sawarkar R. and Weber W.; "Phytochrome-Based Extracellular Matrix with Reversibly Tunable Mechanical Properties"; Advanced Materials; 2019, 31(12):e1806727.

Facts, background information, dossiers

  • optogenetics
  • cell analysis
  • T cells

More about Uni Freiburg

  • News

    Innocent and highly oxidizing

    Chemical oxidation, the selective removal of electrons from a substrate, represents one of the most important transformations in chemistry. However, most common oxidants often show disadvantages such as undesired side reactions. The chemist Marcel Schorpp and colleagues from the group of Pr ... more

    Programming with the Light Switch

    In the development of autonomous systems and materials, self-assembling molecular structures controlled by chemical reaction networks are increasingly important. However, there is a lack of simple external mechanisms that ensure that the components of these reaction networks can be activate ... more

    Coronavirus data analysis

    Dr. Wolfgang Maier and Dr. Björn Grüning from the University of Freiburg, together with researchers from universities in Belgium, Australia and the USA, have reviewed the previously available data on sequences of the novel coronavirus and published their analyses on the open source platform ... more

  • q&more articles

    Modular biofactories at the cellular level

    Despite his love for complex molecular architectures, this „dyed-in-the-wool“ bio-organic chemist has never embraced the conventional segregation of synthetic polymers and bio­logical macromolecules. All molecules are composed of atoms, after all. Why make an artificial distinction? Why not ... more


    From a pluripotent stem cell a muscle cell or a liver cell can form, which despite their difference in appearance, are genetically identical. From one and the same genotype, therefore, the most diverse phenotypes can be formed – epigenetics is making it possible! It is a very exciting area ... more

  • Authors

    Dr. Stefan Schiller

    Stefan M. Schiller studied chemistry at Gießen (Mainz, Germany) and the University of Massachusetts, majoring in macromolecular chemistry and biochemistry. For his doctorate in biomimetic membrane systems he worked till 2003 at the Max Planck Institute for Polymer Research in Mainz. Researc ... more

    Julia M. Wagner

    Julia M. Wagner studied pharmacy in Freiburg (licensure 2008). Since 2008 she is a PhD student and research assistant in the group of Professor Dr. M. Jung. Her research focuses ­on the cellular effects of histone deacetylase inhibitors. more

    Prof. Dr. Manfred Jung

    Manfred Jung is a graduate of the University of Marburg, where he studied pharmacy (licensure  1990) and obtained his doctorate in pharmaceutical chemistry with Prof. Dr. W. Hanefeld. After a post-doctorate at the University of Ottawa, Canada, he began with independent research in 1994 ­at ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:


Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE