15-Apr-2019 - Universität Regensburg

A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a key quantum motion of electrons in atomically thin crystals on the time scale of a single oscillation cycle of light. They directly observe, how the electron in a bound electron-hole pair jumps from one atomic layer to the next, creating a pair of charge carriers in a long-distance relationship, a so-called "interlayer exciton".

In order to make electronics more powerful, nowadays circuits are becoming ever more compact. Here, the limit is the atomic length scale. Novel, layered crystals of so-called transition metal dichalcogenides, which can be thinned down to a few atomic layers, promise ultimately thin components such as solar cells and transistors. However, charge carriers behave very unconventionally in only two dimensions. For example, if an electron is excited by absorbing light in a transition metal dichalcogenide, it leaves behind a hole at its original location. Electron and hole can form a bound pair, an exciton. The negatively charged electron orbits the positively charged hole in analogy to an electron in the hydrogen atom orbiting the nucleus. Because of the strong attraction between electrons and holes, these excitons are also stable at room temperature.

For important applications, such as solar cells, however, electrons and holes need to be spatially separated. This is achieved by stacking two different dichalcogenides on top of each other. Physicists from Regensburg led by Professors Rupert Huber, Tobias Korn, John Lupton and Christian Schüller have now observed this charge separation of excitons across only two atomically thin layers in collaboration with Professor Ermin Malic's group at Chalmers University in Sweden. They excited electrons by ultrashort light pulses creating excitons selectively only in one of the two layers. If these excitons remain within this layer, they are very short-lived, because electrons and holes recombine very rapidly with the electron returning to its initial position. In a layered sample structure, on the other hand, the electron can also jump into the adjacent layer – a spatially separated, so-called interlayer exciton forms.

"Since the layers are atomically thin, the electron still feels the hole’s presence, so they can continue to interact across the layer," explains Fabian Mooshammer, PhD student and co-author of the study. Due to the spatial separation, however, it takes much longer for the electron to return to its initial position. This significantly longer lifetime is only one of the reasons why interlayer excitons have caused a lot of excitement in recent years, both in fundamental research and in optoelectronics.

The scientists were able to observe the behavior of these interlayer excitons during and after their formation. They used a home-built super slow-motion camera to study processes taking place within a few femtoseconds - the millionth part of a billionth of a second. "For the first time worldwide, we observed the formation process of an interlayer exciton and measured how strongly electrons and holes remain bound," says Philipp Merkl, first author of the publication. In addition, the researchers were able to systematically influence the dynamics of the formation process. To this end, they used another special feature of the layered heterostructures: they twisted the two layers with respect to each other. This changes the electronic and optical properties of the resulting structure, which in turn governs the charge transfer.

These new findings represent an important milestone in the development of novel, custom-tailored layered structures and could pave the way for a new generation of ultimately compact and efficient electronics, optoelectronics and information technologies.

Facts, background information, dossiers

  • excitons

More about Uni Regensburg

  • News

    A crystalline attoclock

    From experience, driving through the city centre takes longer than covering the same distance on an open country road. After all, you will encounter a lot of other road users, red lights, road works and traffic jams in the city centre. Conversely, if you want to find out how busy a road is ... more

    Structure of central inflammation switch elucidated

    Researchers at the Universities of Bonn and Regensburg have elucidated the structure of a central cellular inflammatory switch. Their work shows which site of the giant protein called NLRP3 inhibitors can bind to. This opens the way to develop new pharmaceuticals that could target inflammat ... more

    Cellular stress causes cancer cell chemoresistance

    Resistance of cancer cells against therapeutic agents is a major cause of treatment failure, especially in recurrent diseases. An international team around the biochemists Robert Ahrends from the University of Vienna and Jan Medenbach from the University of Regensburg identified a novel mec ... more

  • q&more articles

    Micelles as a reaction environment

    Photoredox catalysis has developed into a powerful tool for the synthesis of organic compounds with diverse structures. However, the high stability of carbon-chloride bonds has long hampered the use of cheap and readily available chloroalkanes as substrates. more

    Interesting Health Promoters

    There is barely a class of compounds among the secondary metabolites of plants that is so prominently represented in our lives as that of the flavonoids. They are found in ­numerous food substances in various oxidation states, and principally as glycosides (Fig. 1). By consuming fruit, vege ... more

  • Authors

    Prof. Dr. Burkhard König

    Burkhard König, born in 1963, received his Ph.D. in 1991 from the University of Hamburg. He continued his scientific education as a post-doctoral fellow with Prof. M. A. Bennett, Research School of Chemistry, Australian National University, Canberra, and Prof. B. M. Trost, Stanford Universi ... more

    Dr. Maciej Giedyk

    Maciej Giedyk, born in 1988, graduated with a Master's of Engineering degree in chemistry from the Warsaw University of Technology, Poland, in 2012. He completed his PhD studies at the Institute of Organic Chemistry Polish Academy of Sciences under the supervision of Professor Dorota Gryko ... more

    Prof. Dr. Jörg Heilmann

    born 1966, studied pharmacy at the Heinrich-Heine-University Düsseldorf and received his licence to practise in 1991. From 1991 – 1992, he worked as a pharmacist in the Löwen-Apotheke in Mülheim an der Ruhr. After receiving his doctorate in 1997 from the Chair in Pharmaceutical Biology at t ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: