02-May-2019 - University of Edinburgh

Tracking Small Things in Cells

Small and tunable fluorophores for the imaging of metabolites in living cells

Living cells can react to disturbances with a changed metabolism, but direct observation of trafficking metabolites in live cells is difficult. An international team of scientists has now developed a class of remarkably small fluorophores called SCOTfluors. The dyes emit light in the visible to near-infrared range and can be attached to common metabolites. The study was published in the journal Angewandte Chemie.

When a living cell changes its metabolism, because of an external signal or because there is something wrong with it, the trafficking of metabolites will change. As metabolites are usually small molecules, typically cells have to be destroyed and the metabolome extracted in order to record such changes. Alternatively, the metabolites could be labeled with a dye, which reveals itself through a fluorescence signal under a microscope.

However, common dyes are often much larger molecules than the metabolite to be labeled. A team of scientists led by Marc Vendrell at the University of Edinburgh, UK, set out to develop the smallest fluorophores to date, which can be attached to typical metabolites such as lipids, sugars, and carboxylic acids.

Fluorescent dyes usually contain fused aromatic rings, which provide a conjugated electronic system, the chromophore. To minimize the size of the dyes, the scientists worked with nitrobenzodiazoles, which contain only one benzene ring, an electronically active nitro group, and a fused diazo ring. This structure proved to be beneficial in two ways: first, it is really small compared to the other fluorescent dyes, and second, the scientists could tune the emission wavelengths just by changing one atom in the molecule; for example, by replacing an oxygen atom with nitrogen, sulfur, selenium, or carbon.

To check whether metabolite tracking was possible by fluorescence labeling, the scientists attached fluorophores either to ceramide, which is a member of the sphingolipid class, glucose, or lactic acid. Then, they added the labeled metabolites to cultures of human cells and the metabolites could be localized in the respective organelles. It was even possible to associate the recycling rates of lactate in hypoxic or normoxic cells—cells that contain different levels of oxygen, as cancer cells do. They also fed labeled glucose to zebrafish embryos and monitored its uptake into their developing brains.

The authors pointed out that the tunability of their mini-fluorophores, which they named SCOTfluors, could be another advantage. They prepared different fluorophores using the same molecular platform and using similar synthetic steps. Not only could they label different metabolites with different colors, but they were also able to follow their uptake profiles in cancer cells simultaneously.

This work gives an example of how new, small fluorophores shed light into the fascinating metabolic machinery of living cells.

Facts, background information, dossiers

  • cells
  • metabolites
  • fluorophores

More about University of Edinburgh

More about Angewandte Chemie

  • News

    Nanocrystals Store Light Energy and Drive Chemical Reactions

    Chemistry is increasingly making use of the trick plants can do with photosynthesis: driving chemical reactions that run poorly or do not occur spontaneously at all with light energy. This requires suitable photocatalysts that capture light energy and make it available for the reaction. In ... more

    Economical PEF Production

    One possible replacement for drink containers made from PET is polyethylene furandicarboxylate (PEF), made from renewable resources. However, the production of the raw material for PEF from biomass is still rather inefficient. A new titanium-based photocatalyst could be about to change this ... more

    Cage with Caps: Selective confinement of rare-earth-metal hydrates in host molecules

    Rare-earth metals are indispensable for many technical products, from smartphones, laptops, batteries, electromotors, and wind turbines, to catalysts. In the journal Angewandte Chemie, a Japanese team has now introduced a molecular “cage” with “caps” that can be used to selectively “confine ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: