08-May-2019 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

When sand behaves like oil

Sand, coffee grounds and rice behave very differently than water or oil, but under certain conditions they will suddenly exhibit astonishing similarities. Scientists have found a way to better understand the behaviour of granular materials.

Sand, rice and coffee are all examples of granular materials. The behaviour of granular substances plays a key role in many natural processes, such as avalanches and the motion of sand dunes, but they are also important in industry. In the manufacture of pharmaceuticals or foods, it is important to process granular materials as efficiently as possible.

Despite the variety of practical applications, the physical laws that govern how granular materials behave are only partly understood. The opposite is true in the case of liquids: a number of well-established physical laws and mathematical instruments are used to describe their behaviour. This is particularly true for unstable, complex mixtures, such as emulsions, which have structures that quickly rearrange themselves.

A new order

Researchers from the group led by Christoph Müller, Professor of Energy Science and Engineering at ETH Zurich, in collaboration with scientists at Columbia University in New York, have discovered that under certain circumstances, mixtures made of granular materials exhibit striking similarities to mixtures of immiscible liquids and can even be described by similar physical laws.

To carry out their experiments, the researchers placed heavy and light grains in different configurations in a narrow container, which they vibrated while simultaneously passing air through it from below. These two processes “fluidised” the grains, so that they began to behave similarly to liquids. From the outside, the researchers then observed how the materials in the container rearranged over time.

Contrasting structures

If, for example, a layer of heavy sand is placed on top of lighter sand, fluidisation will cause the lighter grains to migrate upwards due to their lower density and form globule-like structures much like viscous liquids. “The grains actually behave similar as oil in water would,” explains Christopher McLaren, a doctoral student in Müller’s group. “A complex interaction occurs between the two materials.”

If a small quantity of light sand is embedded in heavy sand, the light sand will more or less move upwards in compact globules. However, in heavy sand, a more complex pattern emerges: a ball of heavy grains, surrounded by light grains, will not simply sink to the bottom intact. Rather, it will gradually disintegrate into several smaller globules, and the material will continue to branch out as time passes.

Diverse applications

“Our findings are significant for several applications,” says Alexander Penn, a postdoc involved in the experiments. “If, for example, a pharmaceuticals manufacturer wants to produce a very homogeneous powder mixture, it has to understand the physics of these materials in detail, so that it can control the process.” The findings are also likely to be of interest to geologists, helping them to better understand the processes involved in landslides or how sandy soils behave during earthquakes.

Moreover, the work will also be relevant to the current energy debate. “If you analyse industrial processes, you can see that a significant share of the needed energy is used to process granular materials,” explains Penn. “If we know how to better control granular materials, we can develop more energy-efficient manufacturing processes.”

Facts, background information, dossiers

  • granular materials
  • materials science

More about ETH Zürich

  • News

    The Achilles heel of the Coronavirus

    SARS-​CoV-2 is critically dependent on a special mechanism for the production of its proteins. A collaborative team led by a research group at ETH Zurich obtained molecular insights into this process and demonstrated that it can be inhibited by chemical compounds, thereby significantly redu ... more

    Designing better antibody drugs with artificial intelligence

    Machine learning methods help to optimise the development of antibody drugs. This leads to active substances with improved properties, also with regard to tolerability in the body. Antibodies are not only produced by our immune cells to fight viruses and other pathogens in the body. For a f ... more

    Cells as computers

    Scientists at ETH Zurich are working to develop information-​processing switching systems in biological cells. Now, for the first time, they have developed an OR switch in human cells that reacts to different signals. Biological cells might one day be equipped with artificial genetic progra ... more

  • q&more articles

    Analysis in picoliter volumes

    Reducing time, costs and human resources: many basic as well as applied analytical and diagnostic challenges can be performed on lab-on-a-chip systems. They enable sample quantities to be reduced, work steps to be automated and completed in parallel, and are ideal for combination with highl ... more

    Investment for the Future

    This is a very particular concern and at the same time the demand placed annually on Dr. Irmgard Werner, who, as a lecturer at the ETH Zurich, supports around 65 pharmacy students in the 5th semester practical training in “pharmaceutical analysis”. With joy and enthusiasm for her subject sh ... more

  • Authors

    Prof. Dr. Petra S. Dittrich

    Petra Dittrich is an Associate Professor in the Department of Biosystems Science and Engineering at ETH Zurich (Switzerland). She studied chemistry at Bielefeld University and the University of Salamanca (Spain). After completing her doctoral studies at the Max Planck Institute for Biophysi ... more

    Dr. Felix Kurth

    Felix Kurth studied bioengineering at the Technical University Dortmund (Germany) and at the Royal Institute of Technology in Stockholm (Sweden). During his PhD studies at ETH Zurich (Switzerland), which he completed in 2015, he developed lab-on-a-chip systems and methods for quantifying me ... more

    Lucas Armbrecht

    Lucas Armbrecht studied microsystems technology at the University of Freiburg (Breisgau, Germany). During his master’s, he focused on sensors & actuators and lab-on-a-chip systems. Since June 2015, he is PhD student in the Bioanalytics Group at ETH Zurich (Switzerland). In his doctoral stud ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: