q&more
My watch list
my.chemie.de  
Login  

News

How Artificial Intelligence Detects Rare Diseases

© Tori Pantel

With artificial intelligence to a diagnosis of rare hereditary diseases: The neural network combines data from portrait images with gene and patient data.

11-Jun-2019: Every year, around half a million children worldwide are born with a rare hereditary disease. Obtaining a definitive diagnosis can be difficult and time consuming. In a study of 679 patients with 105 different rare diseases, scientists from the University of Bonn and the Charité - Universitätsmedizin Berlin have shown that artificial intelligence can be used to diagnose rare diseases more efficiently and reliably. A neural network automatically combines portrait photos with genetic and patient data.

Many patients with rare diseases go through lengthy trials and tribulations until they are correctly diagnosed. "This results in a loss of valuable time that is actually needed for early therapy in order to avert progressive damage," explains Prof. Dr. med. Dipl. Phys. Peter Krawitz from the Institute for Genomic Statistics and Bioinformatics at the University Hospital Bonn (UKB). Together with an international team of researchers, he demonstrates how artificial intelligence can be used to make comparatively quick and reliable diagnoses in facial analysis.

The researchers used data of 679 patients with 105 different diseases caused by the change in a single gene. These include, for example, mucopolysaccharidosis (MPS), which leads to bone deformation, learning difficulties and stunted growth. Mabry syndrome also results in intellectual disability. All these diseases have in common that the facial features of those affected show abnormalities. This is particularly characteristic, for example, of Kabuki syndrome, which is reminiscent of the make-up of a traditional Japanese form of theatre. The eyebrows are arched, the eye-distance is wide and the spaces between the eyelids are long.

The used software can automatically detect these characteristic features from a photo. Together with the clinical symptoms of the patients and genetic data, it is possible to calculate with high accuracy which disease is most likely to be involved. The AI and digital health company FDNA has developed the neural network DeepGestalt, which the researchers use as a tool of artificial intelligence for their study. "PEDIA is a unique example of next-generation phenotyping technologies," said Dekel Gelbman, CEO of FDNA. "Integrating an advanced AI and facial analysis framework such as DeepGestalt into the variant analysis workflow will result in a new paradigm for superior genetic testing".

Researchers train the neural network with 30,000 images

The scientists trained this computer program with around 30,000 portrait pictures of people affected by rare syndromal diseases. "In combination with facial analysis, it is possible to filter out the decisive genetic factors and prioritize genes," says Krawitz. "Merging data in the neuronal network reduces data analysis time and leads to a higher rate of diagnosis.”

The head of the Institute of Genomic Statistics and Bioinformatics at the UKB has been working with FDNA for some time. "This is of great scientific interest to us and also enables us to find a cause in some unsolved cases," said Krawitz. Many patients are currently still looking for an explanation for their symptoms.

The study is a team effort between computer science and medicine. This can also be seen in the shared first authorship of the computer scientist Tzung-Chien Hsieh, doctoral student at the institute of Professor Krawitz, and Dr. Martin Atta Mensah, physician at the Institute of Medical Genetics and Human Genetics of the Charité and Fellow of the Clinician Scientist Program of the Charité and Berlin Institute of Health (BIH). Prof. Dr. Stefan Mundlos, Director of the Institute of Medical Genetics and Human Genetics at the Charité, also participated in the study, as did over 90 other scientists.

"Patients want a prompt and accurate diagnosis. Artificial intelligence supports physicians and scientists in shortening the journey," says Dr. Christine Mundlos, Deputy Managing Director of the alliance of patients with chronic rare diseases (ACHSE) e.V. "This also improves the quality of life of those affected to some extent."

Original publication:
Tzung-Chien Hsieh MS et al.; "PEDIA: Priorization of Exome Data by Image Analysis, Genetics in Medicine"; Genetics in Medicine; 2019

Facts, background information, dossiers

  • hereditary diseases
  • diagnostics
  • rare diseases
  • artificial intelligence
  • neural networks

More about Universität Bonn

  • News

    New method allows precise gene control by light

    A novel optical switch makes it possible to precisely control the lifespan of genetic "copies". These are used by the cell as building instructions for the production of proteins. The method was developed by researchers from the universities of Bonn and Bayreuth. It may significantly advanc ... more

    A "corset" for the enzyme structure

    The structure of enzymes determines how they control vital processes such as digestion or immune response. This is because the protein compounds are not rigid, but can change their shape through movable "hinges". The shape of enzymes can depend on whether their structure is measured in the ... more

    How cells recognize uninvited guests

    Until now, the immune sensor TLR8 has remained in the shadows of science. A research team led by the University of Bonn has now discovered how this sensor plays an important role in defending human cells against intruders. The enzymes RNaseT2 and RNase2 cut ribonucleic acids (RNAs) of bacte ... more

  • q&more articles

    How gold plasma can make hidden structures visible

    In recent years, microcomputed tomography (μCT) has become a standard method in many medical, scientific and industrial fields. This non-invasive technique enables three-dimensional imaging of a wide variety of structures. However, a new combination of methods now makes it possible to visua ... more

  • Authors

    Dr. Markus Lambertz

    Markus Lambertz, born in 1984, studied biology with a focus on zoology, paleontology and geology in Bonn, where he graduated with a diploma degree in 2010. After a research stay over several months in Ribeirão Preto (Brazil) he worked on his doctoral thesis in Bonn, receiving his doctorate ... more

    Prof. Dr. Jürgen Bajorath

    Jürgen Bajorath studied biochemistry and obtained diploma and Ph.D. degrees from the Free University Berlin (West). He is Professor and Chair of Life Science Informatics at the Bonn-Aachen International Center for Information Technology (B-IT) and the LIMES Institute of the University of Bo ... more

More about Charité

  • News

    Could the blood of COVID-19 patients be used to predict disease progression?

    Researchers from Charité – Universitätsmedizin Berlin and the Francis Crick Institute have identified 27 proteins which are present at different levels in the blood of COVID-19 patients, depending on the severity of their symptoms. These biomarker profiles could be used to predict disease p ... more

    Preventing spread of SARS coronavirus-2 in humans

    Viruses must enter cells of the human body to cause disease. For this, they attach to suitable cells and inject their genetic information into these cells. Infection biologists from the German Primate Center - Leibniz Institute for Primate Research in Göttingen, together with colleagues at ... more

    Hundreds of novel viruses discovered in insects

    New viruses which cause diseases often come from animals. Well-known examples of this are the Zika virus transmitted by mosquitoes, bird flu viruses, as well as the MERS virus which is associated with camels. In order to identify new viral diseases quickly and prevent possible epidemics, DZ ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE