14-Jun-2019 - Georg-August-Universität Göttingen

How the cell protects itself

Researchers discover the mechanism that prevents damage caused by shortened proteins

The cell contains transcripts of the genetic material, which migrate from the cell nucleus to another part of the cell. This movement protects the genetic transcripts from the recruitment of “spliceosomes”. If this protection does not happen, the entire cell is in danger: meaning that cancer and neurodegenerative diseases can develop. Researchers at the University of Göttingen and the University Medicine Centre Göttingen have demonstrated the underlying mechanism in the cell.

Human cells are made up of the following: a cell nucleus, which contains the genetic material in the form of DNA; and the cytoplasm, where proteins are built. In the cell nucleus, the DNA that contains the blueprint for the organism is rewritten into another form, messenger RNA, in order to transport the information so that these instructions can be used for protein production. Separated from the original transcript, the proteins can then be produced in the cytoplasm. The separation is important because the messenger RNA is not immediately usable; rather, a precursor (pre-messenger RNA) has to be produced that still contains areas that have to be removed before the messenger RNA reaches the cytoplasm. If these areas are not removed beforehand, then shortened or dysfunctional proteins are produced, which is dangerous for the cell.

The molecular machinery that cuts these areas out of the messenger RNA are the spliceosomes. They contain proteins and another type of transcripts of the DNA, the snRNA.  The snRNA is not translated into proteins like messenger RNA, but together with the proteins, forms the molecular machinery: the spliceosome. In human cells, the snRNA of the spliceosomes also moves into the cytoplasm. In other organisms, such as baker's yeast, which is often used as a model organism in research, scientists had thought that the snRNA of the spliceosomes never left the cell nucleus. The reason for the evolutionary development to export snRNA before incorporation into the spliceosomes of human cells was also a mystery.

"Our experiments show that in fact the snRNA of the spliceosomes also migrates into the cytoplasm in yeast," said Professor Heike Krebber, Head of the Department of Molecular Genetics at the Institute for Microbiology and Genetics at the University of Göttingen. In a second step, the researchers answered the question as to why the messenger RNA of the spliceosomes actually moves into the cytoplasm. It was unclear because the spliceosomes' task is to cut out individual RNA regions and this takes place back in the cell nucleus. The team of researchers manipulated the yeast by genetic experiments so that the precursors of snRNA no longer changed in the cytoplasm. The observation: "The spliceosomes attempt to work with the precursors, the unfinished snRNA, and this cannot function as it’s supposed to," said Krebber. "This is the reason that healthy cells must first send the precursors of messenger RNA out of the cell nucleus immediately after their production: it is to prevent them from being used by the developing spliceosomes. This basic understanding is important in order to identify the underlying cause of the development of diseases.

Facts, background information, dossiers

  • cells
  • spliceosome
  • cell nucleus
  • cytoplasm
  • proteins
  • cancer
  • neurodegenerative diseases

More about Uni Göttingen

  • News

    Research describes fundamental principle of enzyme catalysis

    It is well known in physics and chemistry that equal charges repel each other, while opposite charges attract. It was long assumed that this principle also applies when enzymes – the biological catalysts in all living organisms – form or break chemical bonds. It was thought that enzymes pla ... more

    Targeting gene expression in mitochondria

    Mitochondria are considered the power plants of cells because they generate energy from our food with the help of oxygen. The machinery required for this is called the respiratory chain. Its central building blocks are formed by mitochondria themselves through the expression of genes of the ... more

    “Tug of war” between cells – When crucial connections are missing

    The ability of cells to move together in harmony is crucial for numerous biological processes in our body, for example wound healing, or the healthy development of an organism. This movement is made possible by the connections between individual cells. These connections, in turn, are establ ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: