q&more
My watch list
my.chemie.de  
Login  

News

Cell Division at High Speed

When two proteins work together, this worsens the prognosis for lung cancer patients

AG Gaubatz / University of Wuerzburg

Cells divide after activation of YAP (green staining) – but only if the MMB protein complex is intact.

20-Jun-2019: In malignant tumours, the cells usually proliferate quickly and uncontrollably. A research team from the Biocenter of Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, has discovered that two important regulators of cell division can interact in this process. If this is the case, affected patients have particularly poor chances of survival. A special form of lung cancer was investigated.

The JMU team led by Professor Stefan Gaubatz and Dr. Grit Pattschull from the Chair of Biochemistry and Molecular Biology II analysed the activities of the protein YAP and the protein complex MMB (Myb-MuvB). According to the researchers, the former protein is only able to initiate cell division when it interacts with a subunit of the MMB complex. The molecular details of these processes are currently described in the journal Cell Reports.

"Our results show for the first time that there is a connection between these two cancer-relevant signalling pathways," said Professor Gaubatz. If this connection can be broken, this could possibly be applied for cancer therapy.

Next, the JMU research team will investigate the exact details of the interaction between YAP and the MMB protein complex. In particular, the researchers hope to identify further proteins that are involved in the interaction of the two signalling pathways. The long-term goal is to suppress tumour growth by blocking the interaction.

Original publication:
Pattschull, Grit et al.; "The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes"; Cell Reports; 18. Juni 2019

Facts, background information, dossiers

  • cell division
  • lung cancer
  • cancer

More about Uni Würzburg

  • News

    Hurdle of microscopy overcome

    High-resolution microscopy makes it theoretically possible to image cell structures with a resolution of a few nanometres. However, this has not yet been possible in practice. The reason for this is that antibodies carrying a fluorescent dye are usually used to mark the cell structures. The ... more

    New Molecular Probes for Opioid Receptors

    It could be an important step forward in the improvement of pain therapy: Thanks to newly developed molecular probes, the behavior of individual opioid receptors can now be studied in detail. Strong painkillers are very important in the management of patients with cancer and heart attack o ... more

    Tracking Down False Parkers in Cancer Cells

    In squamous cell carcinoma, a protein ensures that unneeded proteins are no longer disposed of. A research team at the University of Würzburg has switched off this protein for the first time. Squamous cell carcinoma is a very unusual type of cancer. They occur in many tissues – for example ... more

  • q&more articles

    High-tech in the beehive

    Healthy honeybee colonies are crucial to maintaining the natural diversity of flowering plants and the global production of plant-derived foodstuffs. As much as 35 % of this production depends on insect-based pollination, in which the honeybee (Apis mellifera) plays a leading role. For fund ... more

  • Authors

    Prof. Dr. Jürgen Tautz

    studied biology, geography and physics at the University of Konstanz before receiving his doctorate from the University on an ecology-related subject. Work in insect, fish and frog bio-acoustics was followed by his foundation of the BEEgroup at the University of Würzburg in 1994, a group th ... more

  • Videos

    High-tech in the beehive

    more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE