q&more
My watch list
my.chemie.de  
Login  

News

Extremely hard yet metallically conductive

Novel material with high-tech prospects

BGI, Maxim Bykov

The structure of rhenium nitride pernitride containing single nitrogen atoms (red) and nitrogen dumbbells N-N (blue). Larger spheres show rhenium atoms.

09-Jul-2019: An international research group led by scientists from the University of Bayreuth has identified a previously unknown material at DESY: Rhenium nitride pernitride. Thanks to a combination of properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. The production process developed in Bayreuth opens up the possibility of also synthesising other technologically interesting materials in sufficiently large quantities.

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was believed that these properties could not occur simultaneously in the same material and were therefore incompatible. But this prejudice has been soundly refuted by the research work now published, which has passed through two stages of development in Hamburg and Bayreuth: “The initial characterisation of rhenium nitride pernitride was done with a a tiny sample in a high-pressure diamond anvil cell at DESY with the help of our X-ray light source PETRA III,” says co-author Hanns-Peter Liermann, head of the Extreme Conditions Beamline (ECB) at DESY. Under a compression pressure of 40 to 90 gigapascals, corresponding to 400000 to 900000 times the atmospheric pressure, small amounts of this material were produced in a diamond anvil cell that could also be recovered at ambient pressure. Re2(N2)(N)2 is its chemical formula.

“The crystal structure that we discovered in Hamburg at the X-ray light source PETRA III surprised us very much: It contains both single nitrogen atoms and the N-N nitrogen dumbbells, in which two nitrogen atoms are strongly bound to each other. This internal structure obviously creates a very high resistance to pressure acting on the crystals from the outside: Rhenium nitride pernitride is ultra-incompressible,” says main author Maxim Bykov, postdoctoral researcher at the Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI) at the University of Bayreuth and based at DESY in Hamburg.

At BGI it was subsequently possible to produce the new material in a large-volume press at a significantly lower pressure of 33 gigapascals. “Applications of the large-volume press technology for materials synthesis are of great importance to materials science,” emphasizes co-author Tomoo Katsura from BGI. At the heart of the new process is a reaction of rhenium with ammonium azide. The rhenium nitride pernitride synthesised in this way can be investigated under ambient conditions. And the process can be used for the synthesis of other nitrides, in particular nitrides of transition metals, which could also have technologically important properties. This research therefore shows in exemplary fashion just what innovation can come out of high-pressure research in materials science.

“Although the exact scope of application for the new material is still hard to grasp, its exceptional combination of physical properties makes rhenium nitride a material that can help meet the technological challenges of the future,” explains co-author Natalia Dubrovinskaia of the Laboratory of Crystallography at the University of Bayreuth, who coordinated the work together with Leonid Dubrovinsky form BGI. “What is important about our new study, however, is not only the results as such, or the technological applications that might one day spring up,” adds Dubrovinsky. “What is particularly exciting is that the development and synthesis of the new material contradicts and clearly disproves previous views that were firmly established in materials science. We have succeeded in doing something that, according to earlier predictions, should not have been possible at all. This should stimulate and encourage further theoretical and experimental work in the field of high-pressure material synthesis.”

In addition to the University of Bayreuth and DESY, the Friedrich Alexander University in Erlangen-Nuremberg, the Ludwig Maximilian University in Munich, the University of Linköping, the materials modelling and development laboratory in Moscow, and the European Synchrotron Radiation Facility (ESRF) in Grenoble were also involved in the work.

Original publication:
"High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re2(N2)(N)2 stable at ambient conditions"; Maxim Bykov et al.; Nature Communications; 2019

Facts, background information, dossiers

More about Uni Bayreuth

  • News

    Always on beat: ultrashort flashes of light under optical control

    Ultrashort laser pulses have enabled scientists and physicians to carry out high-precision material analyses and medical procedures. Physicists from the University of Bayreuth and the University of Göttingen have now discovered a new method for adjusting the extremely short time intervals b ... more

    On the trail of self-healing processes

    Planarians are flatworms with the extraordinary ability to restore wounded or missing parts of their body. It has long been known that a particular group of proteins – known as PIWI proteins – are essential for this ability to regenerate. A team of researchers at the University of Bayreuth ... more

    Biologists develop new method of cloning

    DNA, which contains the genetic information of an organism, consists of long “chains” of nucleotides. In order to study the functions based on the sequence of these building blocks, DNA molecules must be inserted in carrier molecules (plasmid-vectors) to be multiplied. For this cloning proc ... more

  • q&more articles

    Authentic food

    Authentic food is growing in popularity with consumers. In a heavily industrialized market, a regional, single-source and/or specially manufactured product is increasingly becoming a guarantor of greater value. In the premium segment in particular, economically motivated “food fraud” can re ... more

    More than honey?

    For thousands of years, the word “honey” has been synonymous with an all-natural, healthy food. Unsurprisingly, honey has also enjoyed unwavering popularity with consumers – and especially in times when organic food and a healthy lifestyle are more in vogue than ever before. more

    What Are We Eating?

    What ends up on our plates? We used to think we knew – until we were disabused of this notion in early 2013. Instead of beef, there had been large-scale use of processed horsemeat, especially in frozen products and mincemeat. Although this posed no hazard to health, the damage was enormous, ... more

  • Authors

    Dr. Christopher Igel

    completed his undergraduate studies in biochemistry at the University of Bayreuth from 2009 to 2013. He completed his bachelor’s dissertation entitled “Honey Analysis Using NMR” at the BIOmac research centre under the tutelage of Prof. Dr. Schwarzinger. more

    Wolfrat Bachert

    commenced his undergraduate studies in mechanical engineering at TU Dresden before moving to the University of Bayreuth in 2009 to study biology. In 2013, he completed his bachelor dissertation in the Dept. of Biochemistry under the tutelage of Prof. Dr. Wulf Blankenfeldt on the subject of ... more

    Prof. Dr. Stephan Clemens

    Stephan Clemens, Jg. 1963, studied biology in Münster and Brighton, then acquired his doctorate in Münster. Since his postdoc-stay at the University of California San Diego, his scientific interest has been mainly targeted at metal homoeostasis in plants. He uses the models Arabidopsis thal ... more

More about Deutsches Elektronen-Synchrotron DESY

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE