q&more
My watch list
my.chemie.de  
Login  

News

Direct detection of circulating tumor cells in blood samples

Enhanced Glow

© Wiley-VCH

09-Aug-2019: Tumor cells circulating in blood are markers for the early detection and prognosis of cancer. However, detection of these cells is challenging because of their scarcity. In the journal Angewandte Chemie, scientists have now introduced an ultrasensitive method for the direct detection of circulating tumor cells in blood samples. It is based on the amplified, time-resolved fluorescence measurement of luminescent lanthanide ions released from nanoparticles that bind specifically to tumor cells.

Conventional techniques for the detection of circulating tumor cells require complicated enrichment before detection because a sample of 10 million blood cells only contains about one tumor cell. In contrast, the new method developed by a team working with Xiaorong Song, Xueyuan Chen, and Zhuo Chen, at Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Agriculture and Forestry University, and Fujian Cancer Hospital (Fuzhou, Fujian, China), works with no enrichment step and directly detects circulating tumor cells in blood samples. The technique is based on a so-called “dissolution-enhanced time-resolved photoluminescence” and uses fluorescing nanoparticles made of lanthanide europium complex.

First the researchers produced antibodies against the epithelial cell adhesion molecule (EpCAM, which is a glycoprotein that is present in very high numbers on the surfaces of many tumor cells and acts as a diagnostic marker for cancer). These antibodies were applied as a coating in the wells of microplates, causing tumor cells contained in the blood sample to remain stuck deep in the wells as other blood components were removed.

The scientists coated the europium-containing nanoparticles with the same antibodies. This caused large numbers of the nanoparticles, added in solution, to specifically bind to the tumor cells. A subsequently added “developer” dissolved the nanoparticles, releasing myriad europium ions. These were immediately bound and tightly locked up by other components of the developer solution. This resulted in a manifold amplification of the fluorescence.

Another essential advantage of this method is that europium ions are very long-lived fluorophores that continue to fluoresce for several microseconds after excitation with a flash of light. Because the measurements are time-resolved, it is possible to start the measurement with a delay. Background signals caused by the autofluorescence of cell components only continue for a few nanoseconds and fade before the measurement begins. This increases the sensitivity of the measurements, making it possible for the researchers to detect a single tumor cell per microplate well.

Tests with blood samples from cancer patients registered as few as 10 cells per milliliter of blood. Fourteen out of fifteen cancer patients were correctly identified by this new method. The number of tumor cells in the samples correlated strongly with the stage of cancer in each patient.

Original publication:
Xueyuan Chen et al.; "Direct Detection of Circulating Tumor Cells in Whole Blood Using Time‐Resolved Luminescent Lanthanide Nanoprobes"; Angewandte Chemie International Edition; 2019

Facts, background information, dossiers

  • cancer
  • cancer diagnostics
  • photoluminescence

More about Chinese Academy of Sciences

  • News

    A Close Look at Lithium Batteries

    Batteries with metallic lithium anodes offer enhanced efficiency compared to conventional lithium-ion batteries because of their higher capacity. However, safety concerns and a short lifespan stand in the way. To better analyze the causes of malfunctions and premature failure of such batter ... more

    First underwater carpet cloak realized, with metamaterial

    Researchers at the Institute of Acoustics (IOA) of the Chinese Academy of Sciences have designed and fabricated an underwater acoustic carpet cloak using transformation acoustics, a scientific first. An acoustic cloak is a material shell that can control the propagation direction of sound w ... more

More about Angewandte Chemie

  • News

    Actively Swimming Gold Nanoparticles

    Bacteria can actively move towards a nutrient source—a phenomenon known as chemotaxis—and they can move collectively in a process known as swarming. Chinese scientists have redesigned collective chemotaxis by creating artificial model nanoswimmers from chemically and biochemically modified ... more

    Glow Reveals Dangerous Bacteria

    Salmonella and listeria are among the most widely distributed and deadliest causes of foodborne infections. Their rapid and reliable detection on food and industrial food processing equipment is very important. In the journal Angewandte Chemie, scientists have introduced a new, ultrasensiti ... more

    Microglia Turned On

    Part of the immune system in the brain is made up of so-called microglia cells. Korean and Singaporean researchers have now developed a fluorescent probe that specifically labels this type of macrophage. The cells were visualized in cell culture and in the live brains of rodents. As detaile ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE