q&more
My watch list
my.chemie.de  
Login  

News

Assemblies of proteins relevant not only for Alzheimer’s and Parkinson’s disease

FZJ / Christine Röder

Cross section of the 3D model of an amyloid fibril against the backdrop of a cryo-electron microscopy recording. A PI3K SH3 domain is highlighted in yellow.

23-Aug-2019: Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains – an important model system for research. Although the fibrils examined are not themselves connected with an illness, the findings made and methods developed could serve to understand diseases such as Alzheimer’s and Parkinson’s.

Proteins are central components of living material. These complex molecules made up of combinations of individual amino acids in some cases comprise thousands of individual atoms and have sophisticated three dimensional shapes. The term ‘fold’ is used to describe this structure. The fold of a protein determines its biological function.

Misfolding into non-natural structures and associated aggregation makes proteins not only useless but potentially toxic. The current view is that many neurodegenerative diseases are triggered by misfolded proteins. They form deposits in critical parts of the central nervous system. Initially, fibrillar structures, referred to as ‘amyloid fibrils’, form. Larger deposits of such amyloid fibrils form the typical plaques that can be found in the brain tissue and can restrict, damage or kill nerve cells.

The PI3K SH3 domains are usually part of larger proteins, but can also exist alone in their correctly folded form. They play a major role in cellular communication. For many years, these domains have been used as model systems in order to examine protein folding and thus determine the causes of misfolding. This is because researchers have discovered that these domains can also form amyloid fibrils that do not differ from the fibrils typical for diseases and are just as poisonous to cells. In fact, all proteins can potentially form amyloid fibrils; healthy organisms must actively and constantly combat this process.

Many fundamental discoveries of amyloid fibrils that are directly applicable to disease-related proteins were made using this model system. “But what we didn’t know until now was the precise three-dimensional structure of the fibrils from the PI3K SH3 domains,” explains Prof. Dr. Gunnar Schröder, Professor of Computational Structural Biology at HHU as well as work group leader at Forschungszentrum Jülich.

“Now we can use cryo-EM to understand these structures fully,” adds Prof. Dr. Alexander Büll, corresponding author alongside Schröder of the study published in Nature Communications. Büll was an Assistant Professor at HHU until early 2019 and is now a Full Professor in the Department of Biotechnology and Biomedicine at the Technical University of Denmark in Lyngby. Speaking about the significance of this determined structure, Prof. Schröder adds: “Now that we know the spatial structure, much of the earlier data from the last 20 years can be reinterpreted or interpreted more quantitatively.”

“Cryo-electron microscopy is a wonderful tool for determining the three-dimensional structure of the fibrils,” emphasises Christine Röder, first author of the study and a member of Prof. Schröder’s work group in Jülich. The 2017 Nobel Prize in Chemistry was awarded for the development of this method, with which complex biomolecules that adopt their natural form only in an aqueous environment can be presented in atomic resolution. The samples dissolved in water – for example proteins – are plunge-frozen to very low temperatures and thus fixed in their natural structure. This makes it possible to examine them under an electron microscope in this state. However, this can’t be achieved with a single image, but in a succession of several recordings that show the protein from different angles. Computers then put the many individual recordings together to form a three-dimensional image.

Original publication:
Christine Röder, Nicola Vettore, Lena N. Mangels, Lothar Gremer, Raimond B. G. Ravelli, Dieter Willbold, Wolfgang Hoyer, Alexander K. Buell & Gunnar F. Schröder; "Atomic structure of PI3-kinase SH3 amyloid fibrils by cryo-electron microscopy"; Nature Communications (2019) 10:3754

Facts, background information, dossiers

  • neurodegenerative diseases
  • amyloid fibrils
  • cryo-electron microscopy
  • Alzheimer’s disease
  • Parkinson's disease
  • protein aggregates

More about Universität Düsseldorf

  • News

    New anti-malarial lead compound successfully tested

    Researchers in a team headed by Professor Thomas Kurz at the Institute of Pharmaceutical and Medicinal Chemistry of Heinrich Heine University Düsseldorf (HHU) have successfully tested an optimised lead compound in animal experiments that acts against plasmodia, i.e. malaria parasites. Lead ... more

  • q&more articles

    Surprisingly simple molecules as potential OLED-Emitters?

    Organic light emitting diodes (OLEDs) are presently conquering the market for displays of smartphones and TVs. They also have a great potential in lighting applications. Current devices for the blue part of the visible spectrum lag behind their green and red counterparts in terms of efficie ... more

  • Authors

    Kristoffer Thom

    Kristoffer Thom, born in 1993, studied chemistry at the Heinrich-Heine-University Düsseldorf, where he completed his bachelor thesis in the group of Rainer Weinkauf on mass spectrometry of peptides. For his master thesis he joined the group of Peter Gilch, investigating novel emitters for O ... more

    Prof. Dr. Peter Gilch

    Peter Gilch, born 1970, studied chemistry at the University of Konstanz before receiving his PhD in 1999 from the Technical University Munich. He then joined the Ludwig-Maximilians-University Munich for his Habilitation (2004) at the Lehrstuhl für BioMolekulare Optik. Since 2009 he has been ... more

More about Forschungszentrum Jülich

  • News

    Artificial Synapses Made from Nanowires

    Scientists from Jülich together with colleagues from Aachen and Turin have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell. The component is able to both save and process information, as well as receive numerous signals in par ... more

    The repulsion trick

    Jülich researchers have succeeded in controlling the growth of organic molecules using a special trick. Molecules that repel each other play a key role in this process: due to their opposing forces, they always keep a certain distance from their neighbours. Therefore, they mix easily with a ... more

    New electron source for materials analysis

    How can solar cells be made more efficient? How can solar and wind energy be best stored for later use? Technologies for the transformation of the German energy sector (Energiewende) require tailor-made materials which are both affordable and efficient. One important tool in the search for ... more

  • q&more articles

    Macromolecular environments influence proteins

    The high-intensity interaction of proteins with other macromolecules can cause signifi cant changes to protein properties such as translational mobility, for example, or their conformational states. Accordingly, the study of proteins in macromolecular environments that typically very closel ... more

    Caffeine Kick

    Caffeine is the most widely consumed psychoactive substance worldwide. It supplies the active ingredient in beverages such as coffee, tea and energy drinks. Caffeine can focus vigilance and attention, reduce drowsiness and enhance the ability to perform cognitive functions. Its neurobiologi ... more

  • Authors

    Prof. Dr. Jörg Fitter

    Jörg Fitter studied physics at the University of Hamburg. After completing his doctoral studies at FU Berlin, he worked in neutron scattering and molecular biophysics at the Hahn Meitner Institute in Berlin and Jülich Research Center. He completed his habilitation in physical biology at Hei ... more

    Dr. David Elmenhorst

    studied medicine in Aachen before receiving his doctorate in sleep research from the German Aerospace Centre (Deutsches Zentrum für Luft- und Raumfahrt, DLR) in Cologne. During 2008/2009, he was a visiting researcher at the Brain Imaging Centre in Canada’s Montreal Neurological Institute an ... more

    Prof. Dr. Andreas Bauer

    studied medicine and philosophy in Aachen, Cologne and Düsseldorf, where he received his doctorate in the field of neuroreceptor autoradiography. After specialist medical training at Cologne University Hospital he completed his habilitation in neurology at the University of Düsseldorf. Sinc ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE