q&more
My watch list
my.chemie.de  
Login  

News

New approaches to heal injured nerves

© RUB, Kramer

Dietmar Fischer (on the left) and Marco Leibiger investigate new mechanisms that enable the regeneration of injured nerves.

27-Aug-2019: Preventing the deactivation of a protein could be the key to repairing the central nervous system.

Injuries to nerve fibers in the brain, spinal cord, and optic nerves usually result in functional losses as the nerve fibers are unable to regenerate. A team from the Department of Cell Physiology at Ruhr-Universität Bochum (RUB) led by Professor Dietmar Fischer has deciphered new mechanisms that enable the regeneration of such fibers. This could open up new treatment approaches for the brain, optic nerve, and spinal cord injuries.

Intervention into protein has desirable and undesirable effects

The brain, spinal cord, and optic nerves are referred to collectively as the central nervous system. The nerve fibers, called axons, are unable to grow back following injury, meaning that damage is permanent. “It is possible to partially restore the regenerative capacity of nerve cells in the central nervous system by eliminating the inhibiting protein PTEN,” explains Dietmar Fischer. “However, a knockout of this kind also triggers many different reactions in the cells at the same time, which often lead to cancer.” As a result, the direct inhibition of this protein is not suitable for therapeutic approaches in humans. What’s more, the originally postulated mechanism underlying the renewed regenerative capacity following PTEN knockout could not be confirmed in further studies, causing the researchers to seek alternative explanations.

Only the positive effects allowed

While investigating this as-yet unclear mechanism, the Bochum-based researchers were able to show for the first time that PTEN knockout significantly inhibits an enzyme called glycogen synthase kinase 3, GSK3 for short. This enzyme, in turn, blocks another protein called collapsin response mediator protein 2, CRMP2. This means that the PTEN knockout prevents CRMP2 from being inhibited by GSK3. “If we directly prevent this second step, i.e., stop the inhibition of CRMP2, we can also achieve the regeneration-promoting effect in a more specific manner,” explains Dietmar Fischer. The activation of CRMP2 itself is not known to have any carcinogenic effect.

Approaches for new medications

“Although we have so far only shown these effects in genetically modified mice and using gene therapy approaches, these findings open up various possibilities for the development of new drug approaches,” explains the neuropharmacologist Dietmar Fischer. Further studies in his department are investigating these options.

Original publication:
Marco Leibinger, Alexander Hilla, Anastasis Andreadaki, Dietmar Fischer; "GSK3-CRMP2 signaling mediates axonal regeneration induced by PTEN knockout"; Nature Communications Biology; 2019

Facts, background information, dossiers

  • central nervous system
  • nerves
  • regeneration
  • axons
  • nerve cells

More about Ruhr-Universität Bochum

  • News

    New findings on the recycling centres of cells

    Like tiny garbage chutes, certain organelles clean cells of superfluous or defective material. Researchers are currently studying the mechanisms underlying this process. Both animal and plant cells depend on their own damaged or superfluous cell material being removed – a process referred t ... more

    How two water molecules dance together

    Although water is omnipresent, the interaction between individual water molecules is not yet fully understood. An international research team has gained new insights into how water molecules interact. For the first time, the researchers were able to completely observe all of the movements b ... more

    High reaction rates even without precious metals

    Precious metals are often efficient catalysts. But they are expensive and rare. However, it has so far been difficult to determine how efficient non-precious metal alternatives are. Non-precious metal nanoparticles could one day replace expensive catalysts for hydrogen production. However, ... more

  • q&more articles

    Light plus current: The formula for researching what happens to individual nanoparticles

    A combination of dark-field microscopy and electrochemistry can make individual nanoparticles in a liquid medium visible. The technique is suited to determine the activity of catalysts during their use. more

    Vibrational spectroscopy - Label-free imaging

    Spectroscopic methods are now granting us deep insights into biological systems at previously unattainable spatial and temporal resolutions. Complementing the already well-established fluorescence spectroscopy, the major potential of label-free vibrational spectroscopy has become clear in r ... more

  • Authors

    Kevin Wonner

    Kevin Wonner, born in 1995, studied chemistry with the focus on electrochemical nanoparticle characterization at the Ruhr University Bochum. He started his PhD in 2018 at the chair of Analytical Chemistry II of Professor Dr. Kristina Tschulik and is supported by the graduate school 2376. Hi ... more

    Mathies V. Evers

    Mathies Evers, born in 1989, studied chemistry at the Ruhr University Bochum, where he researched the synthesis of atom-precise molecular clusters. After his master's degree he started his doctoral thesis at the Chair of Analytical Chemistry II of Professor Dr. Kristina Tschulik and is supp ... more

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik received her doctorate from TU Dresden in 2012 and worked as a postdoctoral fellow at the Leibniz Institute for Solid State and Materials Research Dresden and at the University of Oxford. Afterwards she established the working group for “Electrochemistry and Nanoscale Mate ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE