28-Aug-2019 - Heinrich-Heine-Universität Düsseldorf

Biological risk potential of nanoparticles studied

Carbon nanoparticles are a promising tool for biomedical applications, for example for targeted transportation of biologically active compounds into cells. A team of researchers from the Physics, Medicine and Chemistry departments at Heinrich Heine University Düsseldorf (HHU) has now examined whether these particles are potentially dangerous for the organism and how cells cope with them once they have been incorporated.

Nanoparticles are smaller than five nanometres – a nanometre being one millionth of a millimetre – which corresponds approximately to the size of macromolecules. Such tiny particles are very easily absorbed in body cells. There are two aspects to this feature. Firstly, it makes nanoparticles good vehicles for transporting a broad range of compounds or substances attached to them into normal diseased cells in a targeted manner.

On the other hand, they can also pose health risks, for example in connection with particulate matter. One of the ways that particulate matter is created is in combustion processes, and part of that can be classified as nanoparticles. These extremely small particles can overcome the blood-air barrier and penetrate the body: The bronchial mucosa in the lungs doesn’t filter out the particles. Instead, they make their way into the pulmonary alveoli and from there into the bloodstream.

Together with work groups from the Chemistry department, HHU researchers from the Institute of Experimental Condensed Matter Physics working under Prof. Dr. Thomas Heinzel and from the Department of Haematology, Oncology and Clinical Immunology working under Prof. Dr. Rainer Haas have now studied what happens when body cells absorb such nanoparticles. The researchers used nanoparticles made from graphene; this is a special form of carbon that comprises two-dimensional layers of hexagonal carbon rings. They added these to special haematopoietic stem cells referred to as CD34+ stem cells. These cells are particularly sensitive to damaging environmental influences on account of their ability to divide throughout their lifespan. The assumption is that these cells would be damaged more by nanoparticles – if at all – than the more robust other cell types.

The interdisciplinary team of researchers based in Düsseldorf was able to demonstrate that the carbon nanoparticles get into the cells, where they are encapsulated in special organelles called lysosomes. The lysosomes serve as a type of waste removal unit for the body where foreign bodies accumulate and are normally broken down with the help of enzymes. However, the researchers didn’t observe any such process over the duration of the experiments, which lasted for several days.

When comparing the active genes (“gene expression”) of stem cells with and without the addition of nanoparticles, the researchers found that only one of a total of 20,800 recorded expressions had changed; minor effects were determined in a further 1,171 gene expressions.

Prof. Heinzel had this to say regarding the findings: “Encapsulation of the nanoparticles in the lysosomes ensures that these particles are stored securely at least for a few days – for the duration of our experiments – and cannot damage the cell. This means the cell remains viable without any major change in gene expression.” This insight is important if nanoparticles are to be used to deliver drugs into the cell. The experimental framework used here does not allow for any long-term statements to be made regarding any increased probability of cell mutation resulting in cancer.

Facts, background information, dossiers

  • stem cells
  • lysosomes
  • gene expression

More about Universität Düsseldorf

  • News

    A New Tool for Cryo-Electron Microscopy

    Researchers at Forschungszentrum Jülich and Heinrich Heine University Düsseldorf led by Prof. Dr. Carsten Sachse are using cryo-electron microscopy, or cryo-EM for short, to make biomolecules visible at the atomic level. In a paper now published in the journal Nature Methods, they present a ... more

    DNAzymes – how active DNA molecules with therapeutic potential work

    DNAzymes are precision biocatalysts that destroy unwanted RNA molecules. However, major obstacles to their use in medicine remain. Together with Jülich Research Centre (FZJ) and the University of Bonn, a research team from Heinrich Heine University Düsseldorf (HHU) has investigated with ato ... more

    "Immortality protein" fires up the cell's power plants

    The aging researchers Prof. Judith Haendeler from the Medical Faculty and the molecular biologist Prof. Joachim Altschmied from the Department of Biology together with their teams have shown for the first time in the cardiovascular system that Telomerase Reverse Transcriptase (TERT) within ... more

  • q&more articles

    Surprisingly simple molecules as potential OLED-Emitters?

    Organic light emitting diodes (OLEDs) are presently conquering the market for displays of smartphones and TVs. They also have a great potential in lighting applications. Current devices for the blue part of the visible spectrum lag behind their green and red counterparts in terms of efficie ... more

  • Authors

    Kristoffer Thom

    Kristoffer Thom, born in 1993, studied chemistry at the Heinrich-Heine-University Düsseldorf, where he completed his bachelor thesis in the group of Rainer Weinkauf on mass spectrometry of peptides. For his master thesis he joined the group of Peter Gilch, investigating novel emitters for O ... more

    Prof. Dr. Peter Gilch

    Peter Gilch, born 1970, studied chemistry at the University of Konstanz before receiving his PhD in 1999 from the Technical University Munich. He then joined the Ludwig-Maximilians-University Munich for his Habilitation (2004) at the Lehrstuhl für BioMolekulare Optik. Since 2009 he has been ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: