q&more
My watch list
my.chemie.de  
Login  

News

Speeding up the hydrogen production by the magic topological surface states

© MPI CPfS

Topological non-trivial surface states can accept or donate electrons during the water electrolysis process.

29-Aug-2019: Water electrolysis could provide high-quality hydrogen gas that can be used in fuel cells directly. However, since noble metals, such as platinum and iridium, are currently needed to initiate such a reaction, the cost is very high. "Obviously, catalysts that are low-cost with high-activity are needed to make hydrogen energy more competitive with traditional technologies," says Guowei Li at the Max Planck Institute for Chemical Physics of Solids, who studied the surface reactions of several topological materials.

It was obviously a great challenge to find alternatives beyond noble metals. "Topology may be the key to unlocking the barrier in the search for ideal catalysts," says Prof. Claudia Felser, director at the Max Planck Institute for Chemical Physics of Solids. "We studied the surface properties of materials with topological order, from topological insulators to topological semimetals and metals, all these materials have non-trivial surface states that are protected by symmetries"

"In other words, these surface states are very stable and robust against surface modifications such as impurity scattering and even oxidation: the question we're asking is can we find such a perfect system that combines topological order, lost-cost, high efficiency, and high stability."

The team from the Max Planck Institute Chemical Physics of Solids, Dresden together with colleagues from the TU Dresden and the Max Planck Institute for Microstructure Physics and Max-Planck-Institut für Kohlenforschung, Mülheim published a breakthrough result in Science Advances concerning a topological material, namely a magnetic Weyl-semimetal, that is a superior oxygen evolution reaction (OER) catalyst. The magnetic weyl semimetal that the team identified is Co3Sn2S2, a Kagome-lattice Shandite compound.[1]

High-quality bulk single crystals of Co3Sn2S2with sizes of up to centimeters can be exfoliated into thin-layers with defined crystal surfaces. The team showed that these surfaces act as superior catalysts for water splitting, even though the surface area is several orders of magnitudes smaller than today´s conventional nano-structured catalysts. In collaboration with Yan Sun's theory group from the Max Planck Institute Chemical Physics of Solids, they found that there are cobalt-derived topological surface states just above the Fermi level. In the water oxidation process, these surface states can accept electrons from the reaction intermediates, acting as an electron channel whose resistance is not affected by the harsh electrochemical environment.

Inspired by this strategy, the team then investigated the catalytic performance of a Dirac nodal arc semimetal PtSn4, a compound that has much lower percentage of expensive platinum.[2] Such crystals showed superior electrocatalytic stability for periods of time exceeding one month.

"The work serves as an interesting lens into the chemistry of these reaction processes and could be a pathway towards understanding the chemistry itself by clear knowledge of the topological nature of the semimetal catalyst," says one of the expert reviewers of the paper.

Original publication:
[1] G. Li, Q. Xu, W. Shi, C. Fu, L. Jiao, M. E. Kamminga, M. Yu, H. Tüysüz, N. Kumar, V. Süß, R. Saha, A. K. Srivastava, S. Wirth, G. Auffermann, J. Gooth, S. Parkin, Y. Sun, E. Liu, C. Felser; "Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation"; Sci. Adv.; 2019, 5, eaaw9867.
[2] G. Li, C. Fu, W. Shi, L. Jiao, J. Wu, Q. Yang, R. Saha, M. E. Kamminga, A. K. Srivastava, E. Liu, A. N. Yazdani, N. Kumar, J. Zhang, G. R. Blake, X. Liu, M. Fahlman, S. Wirth, G. Auffermann, J. Gooth, S. Parkin, V. Madhavan, X. Feng, Y. Sun, C. Felser; "Dirac Nodal Arc Semimetal PtSn4: An Ideal Platform for Understanding Surface Properties and Catalysis for Hydrogen Evolution"; Angewandte Chemie; 2019, 58, 2-10.

Facts, background information, dossiers

  • topological materials
  • Weyl semi-metals

More about MPI für Chemische Physik fester Stoffe

  • News

    Gold: Rewriting text book knowledge

    Gold as an element is known and highly valued for more than 2500 years, and its popularity is based on its beautiful color and chemical inertness. It is well established that the golden color is, physically spoken, of relativistic origin. The surface of gold is unique, as it hosts states th ... more

More about Max-Planck-Gesellschaft

  • News

    Genetic diversity facilitates cancer therapy

    The constant battle against infectious pathogens has had a decisive influence on the human immune system over the course of our evolution. A key role in our adaptation to pathogens is played by HLA molecules. These proteins activate the immune system by presenting it with fragments of patho ... more

    How cells stick together tightly

    Our organs are specialized compartments, each with its own milieu and function. To seal our organs, the cells in the tissue must form a barrier which is tight even down to the level of molecules. This barrier is formed by a protein complex that “sticks” all the cells together without any ga ... more

    Pathogens from the sea

    Vibrio parahaemolyticus can be found in the tidal zones in estuarine areas. The marine bacterium causes acute gastroenteritis in humans and is the leading cause for seafood borne illnesses in the world. Researchers from the Max Planck Institute for terrestrial Microbiology in Marburg, Germa ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE