q&more
My watch list
my.chemie.de  
Login  

News

Tetravinylallene, a small but powerful molecule, has been synthesized for the first time

Strained, Symmetric, and New

© Wiley-VCH

02-Oct-2019: Many natural compounds used in medicine have complex molecular architectures that are difficult to recreate in the lab. Help could come from a small hydrocarbon molecule, called tetravinylallene, which has been synthesized for the first time by Australian scientists. As detailed in the journal Angewandte Chemie, tetravinylallene can be used to construct complex molecular frameworks more quickly and with less environmental impact than by using established methods.

Tetravinylallene has a remarkably unsaturated molecular structure. Binding of two carbon atoms to each other can be achieved with three types of bonds; either single, double, or triple bonds. Bonds other than single bonds are called “unsaturated” (for example, unsaturated fatty acids contain a mixture of double and single bonds). How these bonds are arranged in a molecule determines its reactivity. Molecules are less reactive and more stable when double bonds alternate with single bonds, but two double bonds in a row give a strained electron configuration, which makes the molecule reactive.

Graduate student Cecile Elgindy, working with Professor Michael S. Sherburn at the Australian National University, Canberra, synthesized the highly unsaturated compound tetravinylallene for the first time. The molecule possesses two adjacent double bonds in its center, both of which are flanked by two entities composed of a single bond followed by a double bond.

Tetravinylallene is electronically strained and it is also symmetric, which would allow chemists to perform multiple reactions in one step. That would make it possible to construct new molecules with complex architectures in fewer steps and with fewer chemicals. Analogues of tetravinylallene do already exist, but those molecules are smaller and less symmetric.

The researchers admit that the synthesis of tetravinylallene was challenging; however, a five-step procedure involving sequential attachment of four small molecules to each other was successful. The scientists also prepared derivatives of tetravinylallene with a slightly altered structure but unchanged bond system.

The researchers made use of tetravinylallene in a proof-of concept synthesis by transforming it into a compound with a complex steroidal architecture. In that procedure, only one reaction partner was necessary and all reactions were controlled simply by varying conditions such as the reaction temperature and solvent.

The study positions tetravinylallene as an intriguing and potent new chemical with practical utility in the synthesis of natural products and drugs. It joins the group of existing small hydrocarbons packed with double bonds but excels because of its symmetry. Tetravinylallene might inspire synthetic chemists who are on the lookout for new methods to synthesize natural products and drugs, or who wish to push the frontiers of basic research.

Original publication:
Michael Sherburn et al.; Angewandte Chemie International Edition; 2019

Facts, background information, dossiers

More about Australian National University

  • News

    A way to pack grains and drugs most efficiently

    Scientists have discovered a way to solve a problem that has baffled humans for so long it is mentioned in the Bible: achieving the most efficient packing of objects such as grains and pharmaceutical drugs. Lead researcher Dr Mohammad Saadatfar from The Australian National University (ANU) ... more

    World's thinnest lens to revolutionize cameras

    Scientists have created the world's thinnest lens, one two-thousandth the thickness of a human hair, opening the door to flexible computer displays and a revolution in miniature cameras. Lead researcher Dr Yuerui (Larry) Lu from The Australian National University (ANU) said the discovery hi ... more

    The chemistry to make a star

    The team created the five-pronged molecule [5]radialene, in work that could lead to more efficient ways to make medicinal agents, said lead researcher, Professor Michael Sherburn from The Australian National University (ANU). "This proof that we can make a compound that so many people thoug ... more

More about Angewandte Chemie

  • News

    Staining Cycles with Black Holes

    In the treatment of tumors, microenvironment plays an important role. It often contains immune cells that are so changed that they promote tumor growth. In the journal Angewandte Chemie, scientists have introduced a method by which cell samples from tumors and their surroundings can rapidly ... more

    Amplification and imaging of microRNA as a biomarker to detect tumor development

    A good indicator of dysregulation in live cells is a change in their RNA expression. MicroRNA (miRNA), a special type of RNA, is considered a biomarker for carcinogenic cells. A team of scientists from China has found a way to amplify miRNA in live tumor cells for bioimaging. As they report ... more

    One Drug, Three Action Modes

    Clinicians combat the drug resistances of some cancer types by using a combination of different drugs. To make this approach more effective, chemists have designed a chemical conjugate that can simultaneously attack several cellular targets using different modes of action. Such a single-dru ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE